Slide 1

Slide 1 text

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs Varun Gulshan (Google Inc) et al. Journal of the American Medical Association, December 13, 2016 https://jamanetwork.com/journals/jama/fullarticle/2588763 Feb. 9th, 2018

Slide 2

Slide 2 text

• ' "#&% deep learning ! • $ 2 https://research.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html (Available: Feb. 9th, 2018)

Slide 3

Slide 3 text

• 128175/," • 54#*3-7# - • )$. [0, 1] • Deep convolutional neural networks • $ 22 million • '80%20% +% (!'& 0 3

Slide 4

Slide 4 text

4 https://research.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html (Available: Feb. 9th, 2018) https://en.wikipedia.org/wiki/Sensitivity_ and_specificity (Available: Feb. 9th, 2018)

Slide 5

Slide 5 text

• B$JA 1. +8(.9 2. 4sensitivity specificity 3. C=;79 4. sensitivity and specificityI?)>:A • 53@H • GF0K • <-?$D* • $2, • '6C=/ %"&E'61 1 • neural network!%#9 • "Hence, this algorithm is not a replacement for a comprehensive eye examination" 5

Slide 6

Slide 6 text

• Tensorflow Tutorial CNN $# • Kaggle • 100"!100" • 80 % 6 Step Training Accuracy sensitivity = 12/20 = 0.6 specificity = 13/20 = 0.65 https://github.com/upura/deep.learning.diabetic.retinopathy