Slide 1

Slide 1 text

Flow in small and large QGP droplets: role of nucleon substructure J. S. Moreland, J. E. Bernhard, W. Ke, S. A. Bass (Duke University) Quark Matter, Chicago, USA 8 February 2017 Funding provided by DOE NNSA Stewardship Science Graduate Fellowship Computing resources provided by the Open Science Grid, supported by the NSF and DOE Office of Science

Slide 2

Slide 2 text

Success of saturation models + hydro Hydro models with saturation IC, e.g. TRENTo, IP-Glasma and EKRT, provide excellent description of bulk observables in A+A collisions 100 101 102 103 104 π± K± p¹ p Nch × 5 solid: identified dashed: charged Yields dN/dy, dNch /dη 0 10 20 30 40 50 60 70 Centrality % 0.8 1.0 1.2 Model/Exp 0.0 0.4 0.8 1.2 π± K± p¹ p Mean pT [GeV] 0 10 20 30 40 50 60 70 Centrality % 0.8 1.0 1.2 0.00 0.03 0.06 0.09 v2 v3 v4 Flow cumulants vn {2} 0 10 20 30 40 50 60 70 Centrality % 0.8 1.0 1.2 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 20 40 60 80 100 〈v n 〉 centrality percentile 0.5 GeV < pT < 1GeV η/s=0.18 filled - ATLAS open - IP-Glasma+MUSIC 〈v2 〉 〈v3 〉 〈v4 〉 PRL 113, 102301 [1405.3605] 0 10 20 30 40 50 60 70 80 centrality [%] 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 vn 2 (a) pT =[0.2 5.0] GeV LHC 2.76 TeV Pb+Pb η/s=0.20 η/s=param1 η/s=param2 η/s=param3 η/s=param4 ALICE vn 2 PRC 93, 024907 [1505.02677] PRC 94, 024907 [1605.03954]

Slide 3

Slide 3 text

Not so good in small systems... PHENIX submitted to PRC [1609.02894] (GeV/c) T p 0.5 1 1.5 2 2.5 3 2 v 0 0.05 0.1 0.15 0.2 0.25 0-5% p+Au 200 GeV 2 PHENIX v AMPT SONIC superSONIC IPGlasma+Hydro (a) PHENIX (GeV/c) T p 0.5 1 1.5 2 2.5 3 2 v 0 0.05 0.1 0.15 0.2 0.25 0-5% d+Au 200 GeV (b) (GeV/c) T p 0.5 1 1.5 2 2.5 3 2 v 0 0.05 0.1 0.15 0.2 0.25 He+Au 200 GeV 3 0-5% (c) IP-Glasma + hydro could not reproduce experimental multiparticle correlations in small systems... what’s wrong? Perhaps hydro isn’t valid, incorporate initial CGC correlations SONIC model works quite well, revisit the MC-Glauber model? Saturation IC + hydro correct picture, small systems require additional nucleon substructure J. Scott Moreland (Duke U.) 2 / 17

Slide 4

Slide 4 text

"Eccentric protons?" Schenke, Venugopalan PRL 113 102301 Data highly constrains functional form of initial entropy deposition (talk by J. Bernhard). Cannot modify the mapping without spoiling bulk A+A observables, but we can add fine structure to the inputs (thickness functions) Optical nucleus Nucleus w/ nucleons Historical analogue: nucleon position hot spots necessary for v3 J. Scott Moreland (Duke U.) 3 / 17

Slide 5

Slide 5 text

"Eccentric protons?" Schenke, Venugopalan PRL 113 102301 Data highly constrains functional form of initial entropy deposition (talk by J. Bernhard). Cannot modify the mapping without spoiling bulk A+A observables, but we can add fine structure to the inputs (thickness functions) Optical proton Proton w/ partons Possibly similar picture for partons inside the nucleon? J. Scott Moreland (Duke U.) 3 / 17

Slide 6

Slide 6 text

Objective: Extend TRENTo initial conditions to include nucleon substructure Estimate new substructure parameters using Bayesian methodology J. Scott Moreland (Duke U.) 4 / 17

Slide 7

Slide 7 text

TRENTo: parametric initial condition model Sample nucleon positions J. Scott Moreland (Duke U.) 5 / 17

Slide 8

Slide 8 text

TRENTo: parametric initial condition model Nuclei collide at random impact parameter b dP(b) = 2πb db J. Scott Moreland (Duke U.) 5 / 17

Slide 9

Slide 9 text

TRENTo: parametric initial condition model Determine participants by pairwise collision probability Pcoll(b) = 1 − exp −σpartonic Tpp(b) J. Scott Moreland (Duke U.) 5 / 17

Slide 10

Slide 10 text

TRENTo: parametric initial condition model Construct participant thickness functions ˜ TA,B = Npart i=1 wi Tp(x − xi) using Gamma random weights wi J. Scott Moreland (Duke U.) 5 / 17

Slide 11

Slide 11 text

TRENTo: parametric initial condition model Construct participant thickness functions ˜ TA,B = Npart i=1 wi Tp(x − xi) using Gamma random weights wi J. Scott Moreland (Duke U.) 5 / 17

Slide 12

Slide 12 text

TRENTo: parametric initial condition model Deposit entropy according to eikonal parametrization: dS dy τ=τ0 ∝ ˜ Tp A + ˜ Tp B 2 1/p generalized mean of participant nuclear density J. Scott Moreland (Duke U.) 5 / 17

Slide 13

Slide 13 text

Parametrizing local entropy deposition Generalized mean ansatz: dS d2r dy ∝ Tp A + Tp B 2 1/p −8 −6 −4 −2 0 2 4 6 8 x [fm] 0 2 4 Thickness [fm−2] Pb+Pb 2.76 TeV Tmin < T < Tmax −1 < p < 1 p = ∞ maximum 1 arithmetic: TA + TB 2 0 geometric: TATB −1 harmonic: 2TATB TA + TB −∞ minimum J. Scott Moreland (Duke U.) 6 / 17

Slide 14

Slide 14 text

Parametrizing local entropy deposition Generalized mean ansatz: dS d2r dy ∝ Tp A + Tp B 2 1/p −8 −6 −4 −2 0 2 4 6 8 x [fm] 0 2 4 Thickness [fm−2] Pb+Pb 2.76 TeV Tmin < T < Tmax −1 < p < 1 p = 1 p = ∞ maximum 1 arithmetic: TA + TB 2 0 geometric: TATB −1 harmonic: 2TATB TA + TB −∞ minimum J. Scott Moreland (Duke U.) 6 / 17

Slide 15

Slide 15 text

Parametrizing local entropy deposition Generalized mean ansatz: dS d2r dy ∝ Tp A + Tp B 2 1/p −8 −6 −4 −2 0 2 4 6 8 x [fm] 0 2 4 Thickness [fm−2] Pb+Pb 2.76 TeV Tmin < T < Tmax −1 < p < 1 p = 0 p = ∞ maximum 1 arithmetic: TA + TB 2 0 geometric: TATB −1 harmonic: 2TATB TA + TB −∞ minimum J. Scott Moreland (Duke U.) 6 / 17

Slide 16

Slide 16 text

Parametrizing local entropy deposition Generalized mean ansatz: dS d2r dy ∝ Tp A + Tp B 2 1/p −8 −6 −4 −2 0 2 4 6 8 x [fm] 0 2 4 Thickness [fm−2] Pb+Pb 2.76 TeV Tmin < T < Tmax −1 < p < 1 p = − 1 p = ∞ maximum 1 arithmetic: TA + TB 2 0 geometric: TATB −1 harmonic: 2TATB TA + TB −∞ minimum J. Scott Moreland (Duke U.) 6 / 17

Slide 17

Slide 17 text

Sampling partons inside the proton Variable parameters: Nucleon width Parton width Number of partons Necessary constraints: Fit inelastic p+p cross section Preserve avg proton radial distribution Procedure 1 Sample parton radius v from deconvolved proton radius w rsample = √ w2 − v2 2 Given a nucleon pair, take all possible parton pairs. Parton pair collision prob given by: Pcoll = 1 − exp(−σppTpp) 3 Nucleon pair collides if one or more parton pairs collide. All partons in participant nucleon added to nucleon thickness function. 4 Partonic cross section parameter σpp is numerically tuned to fit σinel nn σinel nn = ∫ d2b 1 − i,j Pij miss J. Scott Moreland (Duke U.) 7 / 17

Slide 18

Slide 18 text

Effect on nuclear thickness functions Parton width [fm] Lead nucleus 5 0 5 3 partons 20 partons width 0.2 fm 5 0 5 5 0 5 5 0 5 width 0.3 fm x [fm] y [fm] Parton number Proton 1 0 1 3 partons 20 partons width 0.2 fm 1 0 1 1 0 1 1 0 1 width 0.3 fm x [fm] y [fm] Parton number nucleon width fixed, w = 0.5 fm J. Scott Moreland (Duke U.) 8 / 17

Slide 19

Slide 19 text

Exploring the parameter space Model Parameters ▪ e.g. nucleon width, parton width, etc Physics Model ▪ TRENTo initial conditions with partonic substructure ▪ iEBE VISHNU hybrid model CPC 199, 61-85 [1409.8164] Experimental Data ▪ ALICE p+Pb 5.02 TeV yields and correlations Gaussian Process Emulator ▪ nonparametric interpolation ▪ fast surrogate full model Markov chain Monte Carlo ▪ random walk through param space, weighted by posterior Bayes' Theorem ▪ posterior ∝ likelihood × prior Posterior Distribution ▪ prob distribution for true values of model parameters calc events on la�n hypercube a�er many steps, MCMC equilibriates to J. Scott Moreland (Duke U.) 9 / 17

Slide 20

Slide 20 text

Creating the design space parton number npartons = 2k, k ∈ 1–4.5 nucleon width w ∈ 0.4–1 fm parton width: vmin = Amin nparton vmax = w v = vmin + x (vmax − vmin) x ∈ [0, 1], Amin = 0.1 fm2 0.4 0.6 0.8 1.0 nucleon width [fm] 0.0 0.2 0.4 0.6 0.8 1.0 parton width [fm] 1 parton 22 partons J. Scott Moreland (Duke U.) 10 / 17

Slide 21

Slide 21 text

Measuring hydrodynamic response 0 100 200 dS/dy [fm−2] 0 100 200 Nch(|´| < 1) p+Pb, p sNN = 5. 02 TeV 0 2 4 6 8 Nch (|´| < 1)/Area [fm−2] 0.0 0.2 0.4 q­ v2 n ® / q­ "2 n ® v2 v3 0. 2 < pT < 3 GeV, ¢´ > 1 1 Sample IC parameters from design, fix hydro parameters using Bayesian constraints determined from Pb+Pb collisions (talk by J. Bernhard) (η/s)min = 0.06, (η/s)slope = 2.0 GeV−1, τfs = 0.6 fm/c (ζ/s)max = 0.015, (ζ/s)width = 0.02 GeV J. Scott Moreland (Duke U.) 11 / 17

Slide 22

Slide 22 text

Measuring hydrodynamic response 0 100 200 dS/dy [fm−2] 0 100 200 Nch(|´| < 1) p+Pb, p sNN = 5. 02 TeV 0 2 4 6 8 Nch (|´| < 1)/Area [fm−2] 0.0 0.2 0.4 q­ v2 n ® / q­ "2 n ® v2 v3 0. 2 < pT < 3 GeV, ¢´ > 1 1 Sample IC parameters from design, fix hydro parameters using Bayesian constraints determined from Pb+Pb collisions (talk by J. Bernhard) 2 Run O(104) min bias hydro + UrQMD events 3 Fit functions for yield, elliptic and triangular flows J. Scott Moreland (Duke U.) 11 / 17

Slide 23

Slide 23 text

Training data Lines: model calculations at each design point, calculated by applying response functions to dS/dy and εn Symbols: ALICE 5.02 p+Pb data; central bins combined, and v3 data interpolated to match v2 centrality bins 0 10 20 30 40 50 60 70 80 Centrality % 101 102 Nch(|´| < 1) ALICE p+Pb, 5.02 TeV 0 5 10 15 20 25 30 35 40 Centrality % 0.00 0.05 0.10 0.15 0.20 vn {2} v2 v3 0. 2 < pT < 3 GeV, ¢´ > 1 Data: ALICE, PRC 90, 054901 [1406.2474] J. Scott Moreland (Duke U.) 12 / 17

Slide 24

Slide 24 text

Posterior samples One-hundred samples drawn from the calibrated model Spread encapsulates uncertainty in the optimal values of the model parameters 0 10 20 30 40 50 60 70 80 Centrality % 101 102 Nch(|´| < 1) ALICE p+Pb, 5.02 TeV 0 5 10 15 20 25 30 35 40 Centrality % 0.00 0.05 0.10 0.15 0.20 vn {2} v2 v3 0. 2 < pT < 3 GeV, ¢´ > 1 Data: ALICE, PRC 90, 054901 [1406.2474] J. Scott Moreland (Duke U.) 13 / 17

Slide 25

Slide 25 text

−1 0 1 gen mean p 0 1 2 p+p fluct std 0.00 2.25 4.50 log2(npartons) 0.4 0.7 1.0 proton width [fm] −1 0 1 gen mean p 0.0 0.5 1.0 parton struct 0 1 2 p+p fluct std 0.00 2.25 4.50 log2(npartons) 0.4 0.7 1.0 proton width [fm] 0.0 0.5 1.0 parton struct Posterior distribution flat 15% error on data Diagonal: marginalized posterior dist. for individual model parameters Lower diagonal: joint dist’s for pairs of parameters

Slide 26

Slide 26 text

−1 0 1 gen mean p 0 1 2 p+p fluct std 0.00 2.25 4.50 log2(npartons) 0.4 0.7 1.0 proton width [fm] −1 0 1 gen mean p 0.0 0.5 1.0 parton struct 0 1 2 p+p fluct std 0.00 2.25 4.50 log2(npartons) 0.4 0.7 1.0 proton width [fm] 0.0 0.5 1.0 parton struct Posterior distribution flat 15% error on data Diagonal: marginalized posterior dist. for individual model parameters Lower diagonal: joint dist’s for pairs of parameters Red: prior information from Pb+Pb analysis PRC 94, 024907

Slide 27

Slide 27 text

Posterior nucleon realizations Nucleon width w = 0.88 fm Parton number m = 22 Parton width v = 0.45 fm Proton thickness functions [fm−2]

Slide 28

Slide 28 text

Summary and Outlook Presented Added variable parton number, width to nuclear thickness func’s Proton–lead collisions appear to prefer many partons (>10) No clear tension in A+A and p+A parameters using substructure Current estimates slightly overshoot gap between v2 and v3 To do Replace response function with e-by-e hydro+micro Calibrate to Pb+Pb and p+Pb simultaneously Increase max partons to ∼100 Add observables, e.g. mean pT , and additional collision systems J. Scott Moreland (Duke U.) 17 / 17

Slide 29

Slide 29 text

QGP initial conditions in the Eikonal approximation Simplifying postulates Initial energy (entropy) deposition is local Sees only transverse nuclear densities TA,B Hence d2S dx2τ0 dη η=0 ≈ f(TA , TB) The mapping f : TA , TB → s(x, η) should be universal at a given beam energy! ...should not change across p+p, p+Pb, Pb+Pb systems at √ sNN = const. J. Scott Moreland (Duke U.) 1 / 6

Slide 30

Slide 30 text

TRENTo: comparing to specific models 0 1 2 3 Entropy density [fm−3] 1 fm−2 2 fm−2 TB = 3 fm−2 Gen. mean, p = 1 WN 0 1 2 3 Entropy density [fm−3] Gen. mean, p = 0 EKRT 0 1 2 3 4 Participant thickness TA [fm−2] 0 1 2 3 Entropy density [fm−3] Gen. mean, p = − 0. 67 KLN Wounded nucleon model dS dyd2r⊥ ∝ TA + TB ∗T denotes participant thickness EKRT model PRC 93, 024907 dET dyd2r⊥ ∼ Ksat π p3 sat (Ksat , β; TA , TB) after brief free streaming phase KLN model PRC 75, 034905 dNg dyd2r⊥ ∼ Q2 s,min 2 + log Q2 s,max Q2 s,min J. Scott Moreland (Duke U.) 2 / 6

Slide 31

Slide 31 text

Establishing priorities in model-to-data comparison Model-to-data hierarchy find the IC mapping f which describes, ↓ Yields in large, then small systems ↓ Correlations in large systems ↓ Correlations in p+p, p+A? ∗hydrodynamic danger zone Prioritize observables logically simple to complex macroscopic to microscopic −3 −2 −1 0 1 2 3 Á 0.00 0.05 0.10 0.15 0.20 dN/dÁ −3 −2 −1 0 1 2 3 ΔÁ −0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20 C(ΔÁ) J. Scott Moreland (Duke U.) 3 / 6

Slide 32

Slide 32 text

Nucleon substructure—a new degree of freedom PRC 87 064906 [1304.3403v3] Schematic (a) (b) (c) TRENTo p=1 p=0 p= 1

Slide 33

Slide 33 text

Nucleon substructure—a new degree of freedom PRC 87 064906 [1304.3403v3] Schematic (a) (b) (c) TRENTo p=1 p=0 p= 1

Slide 34

Slide 34 text

Constraining initial conditions in A+A collisions Identified yields, mean pT and flows 100 101 102 103 104 π± K± p¹ p Nch × 5 solid: identified dashed: charged Yields dN/dy, dNch /dη 0 10 20 30 40 50 60 70 Centrality % 0.8 1.0 1.2 Model/Exp 0.0 0.4 0.8 1.2 π± K± p¹ p Mean pT [GeV] 0 10 20 30 40 50 60 70 Centrality % 0.8 1.0 1.2 0.00 0.03 0.06 0.09 v2 v3 v4 Flow cumulants vn {2} 0 10 20 30 40 50 60 70 Centrality % 0.8 1.0 1.2 Charged particle yields 0 100 200 300 400 Npart 0 2 4 6 8 10 12 (dNch /dη)/(Npart /2) p+Pb 5.02 TeV 2.76 TeV 200 GeV 130 GeV Pb+Pb 2.76, 5.02 TeV p+Pb 5.02 TeV Au+Au 130, 200 GeV TRENTO Flow correlations 0 2 4 6 8 10 Centrality % −0.8 −0.4 0.0 0.4 0.8 SC(m, n) 1e−7 0 10 20 30 40 50 60 70 Centrality % −2 −1 0 1 2 1e−6 SC(4, 2) SC(3, 2) ...all provide strong constraints on IC −1.0 −0.5 0.0 0.5 1.0 p KLN EKRT / IP-Glasma Wounded nucleon 0. 03+0. 08 −0. 08 See talk by J. Bernhard for latest results with multiple beam energies, Tuesday, 11:20 AM, parallel session 2.1 J. Scott Moreland (Duke U.) 5 / 6

Slide 35

Slide 35 text

Many models, many approaches First principle calculations, e.g. IP-Glasma PRL 108, 252301 [1202.6646] EKRT Nucl. Phys. B 570, 379–389 [9909456] KLN PRC 74, 044905 [0605012] EPOS PRC 92, 034906 [1306.0121] Parametric models MC Glauber Ann. Rev. Nucl. Part. Sci. 57, 205–243 [0701025] TRENTo PRC 92, 011901 [1412.4708] All models effectively implement f : TA , TB → e(x, η) Can compare different model calculations though mapping f J. Scott Moreland (Duke U.) 6 / 6