Slide 1

Slide 1 text

Emerging materials for solar energy: matlockite, kesterite, perovskite, and beyond… Prof. Aron Walsh Department of Materials Imperial College London, UK https://wmd-group.github.io @lonepair

Slide 2

Slide 2 text

Solar Electricity and Fuel Electricity Solar Cells Chemical Energy Solar Fuels High efficiency (20 – 50%) Low efficiency (< 10%) Physics (electron–hole separation) is easier than chemistry (oxidation/reduction reactions) Fusion Reactor 174,000 Terawatts reaches the Earth’s surface

Slide 3

Slide 3 text

Champion (Unstable) Water Splitting

Slide 4

Slide 4 text

Many Photovoltaic Technologies A. Polman et al, Science 352, 307 (2016) High performance “Established” Fundamental research Theoretical limit for single-junction cell

Slide 5

Slide 5 text

Challenge for Emerging Solar Cells GaAs efficiency is close to the theoretical limit, while Si is cheap. New systems must perform! Metal oxides Cu2 O (6%) Bi2 FeCrO6 (8%) Co3 O4 (<1%) Metal sulfides SnS (5%) Cu2 ZnSn(S,Se)4 (14%) Sb2 S3 (8%) Metal halides CsSnI3 (10%) CH3 NH3 PbI3 (22%) CH(NH2 )2 PbI3 (20%) Examples of materials studied for thin-film photovoltaics

Slide 6

Slide 6 text

Talk Outline: Perovskites & Beyond A. Perovskites (ABX3 ) – what can we learn? B. Kesterites (A2 BCX4 ) – danger, low voltage! C. Tin Sulfides (Ax Bx ) – two elements, many problems. D. Beyond (Ax By Xz ) – exploring new materials.

Slide 7

Slide 7 text

Hybrid Organic–Inorganic Perovskites Brief History (1958) – Photoconductivity in CsPbI3 (Møller) (1978) – Synthesis of CH3 NH3 PbI3 (Weber) (1994) – Metallic transition in CH3 NH3 SnI3 (Mitzi) (2009) – Perovskite dye cell (Miyasaka) (2013) – Planar thin-film solar cell (Snaith) Inorganic CsPbI3 Hybrid CH3 NH3 PbI3 or MAPI

Slide 8

Slide 8 text

> 20% Efficient Perovskites from Korea

Slide 9

Slide 9 text

Why Hybrid Perovskites? Essentials for Solar Cells • Strong optical absorption (Eg ~ 1.6 eV) • Light electron and hole masses (conductive) • Easy to synthesise (cheap and scalable) Advanced Features • Large dielectric constants: carrier separation (weak excitons) and transport (low scattering) • Slow e-h recombination: low losses, large VOC o Relativistic effects – spin-orbit coupling o Polar domains – dynamic fluctuations

Slide 10

Slide 10 text

Perovskites: Model vs Reality Plastic crystal behaviour probed by Quasi-Elastic Neutron Scattering (P. Barnes, DOI: 10.1038/ncomms8124); 2D IR Spectroscopy (A. Bakulin, DOI: 10.1021/acs.jpclett.5b01555); Inelastic X-ray Scattering (S. Billinge, DOI: 10.1021/acsenergylett.6b00381) with simulations

Slide 11

Slide 11 text

Phase Transitions in CH3 NH3 PbI3 M. Weller et al, Chem. Commun. 51, 4180 (2015)

Slide 12

Slide 12 text

Phase Transitions in CH3 NH3 PbI3 A. D. Wright et al, Nature Comm. 7, 11755 (2016) Dynamic disorder Static disorder

Slide 13

Slide 13 text

Dynamic Processes in Perovskites Faster (fs) Slower (ps) Electrons and Holes Effective semiconductors Lattice Vibrations Symmetry breaking and carrier separation Molecular Rotations Large static dielectric constant Ions and Charged Defects “Self healing” and hysteresis What is moving in perovskite solar cells? Acc. Chem. Res. 49, 528 (2016)

Slide 14

Slide 14 text

Dynamic Processes in Perovskites Faster (fs) Slower (ps) Electrons and Holes Effective semiconductors Lattice Vibrations Symmetry breaking and carrier separation Molecular Rotations Large static dielectric constant Ions and Charged Defects “Self healing” and hysteresis What is moving in perovskite solar cells? Acc. Chem. Res. 49, 528 (2016)

Slide 15

Slide 15 text

Talk Outline: Perovskites & Beyond A. Perovskites (ABX3 ) – what can we learn? B. Kesterites (A2 BCX4 ) – danger, low voltage! C. Tin Sulfides (Ax Bx ) – two elements, many problems. D. Beyond (ABX) – exploring new materials.

Slide 16

Slide 16 text

Kesterite Quaternary Semiconductors 2 4 2 1×1×2 zincblende superlattice First Cu2 ZnSn(S,Se)4 (CZTS) solar cell 1988; 12.6% by IBM (2014); 13.8% report from DGIST (2016) High-thoughput Density Functional Theory: Phys. Rev. B 79, 165211 (2009)

Slide 17

Slide 17 text

• Mixed phase samples, e.g. Cu2 ZnSnS4 à Cu2 SnS3 + ZnS • Cation disorder, e.g. Cu-Zn; Cu-Sn; Zn-Sn mixing • Deep level defects, i.e. fast non-radiative recombination • Interface reactions, e.g. MoS2 formation at back contact Challenging for experiment, theory and simulation! Issues for Kesterite Solar Cells Wallace, Mitzi and Walsh, ACS Energy Letters 2, 776 (2017) Champion solar cells suffer from large voltage deficits, e.g. for CZTS (Eg = 1.5 eV), VOC = 0.7 V

Slide 18

Slide 18 text

Call for CZTS Support Wallace, Mitzi and Walsh, ACS Energy Letters 2, 776 (2017) A focused research effort could help overcome efficiency bottlenecks

Slide 19

Slide 19 text

2017 STARCELL Network (EU-H2020) http://www.starcell.eu A large consortium (led by IREC, Spain) to improve the performance of kesterite photovoltaics

Slide 20

Slide 20 text

Talk Outline: Perovskites & Beyond A. Perovskites (ABX3 ) – what can we learn? B. Kesterites (A2 BCX4 ) – danger, low voltage! C. Tin Sulfides (Ax Bx ) – two elements, many problems. D. Beyond (ABX) – exploring new materials.

Slide 21

Slide 21 text

Tin Sulfide: 0.4% to 4.4% in 23 Years

Slide 22

Slide 22 text

Tin Sulfide: Mixed Phases Phase competition: Sn(II) and Sn(IV) compounds L. A. Burton and A. Walsh, J. Phys. Chem. C 116, 24262 (2012) Sn(II) 5s25p0 Sn(IV) 5s05p0 Sterically active lone pair [asymmetric coordination] e.g. SnO, SnS Octahedral or tetrahedral environments e.g. SnO2 , SnS2

Slide 23

Slide 23 text

Tin Sulfide: Mixed Phases Phase competition: Sn(II) and Sn(IV) compounds Predicted phase diagrams: Skelton et al, J. Phys. Chem. C 121, 6446 (2017)

Slide 24

Slide 24 text

Tin Sulfide: Mixed Phases Phase competition: Sn(II) and Sn(IV) compounds Predicted phase diagrams: Skelton et al, J. Phys. Chem. C 121, 6446 (2017)

Slide 25

Slide 25 text

Tin Sulfide: Electronic Challenges Device issues with Fermi level pinning Appl. Phys. Lett. 102, 132111 (2013); Phys. Rev. Appl. 6, 014009 (2016)

Slide 26

Slide 26 text

Tin Sulfide: π-SnS New cubic phase can be grown in thin-films using a variety of deposition techniques Golan, Nano Lett 15, 2174 (2015); Skelton et al, APL Materials 5, 036101 (2017) • Previously misidentified as “zincblende” phase • Structure solved on basis of X-ray and electron diffraction • Phonon stable (PBEsol) • Eg = 1.7 eV (HSE06 + SOC) • Chiral: non-linear optics

Slide 27

Slide 27 text

Talk Outline: Perovskites & Beyond A. Perovskites (ABX3 ) – what can we learn? B. Kesterites (A2 BCX4 ) – danger, low voltage! C. Tin Sulfides (Ax Bx ) – two elements, many problems. D. Beyond (ABX) – exploring new materials.

Slide 28

Slide 28 text

Solar Energy Shopping List • Low-cost and non-toxic elements • Direct optical bandgap (1 – 2 eV) • Easy to deposit and scale-up production • Semiconductor with low carrier concentrations • Tolerant to impurities and microstructure • Chemically stable at interfaces • Workfunction matched to electrical contacts

Slide 29

Slide 29 text

Computational Screening Descriptors A. M. Ganose et al, Chem. Comm. 53, 20 (2017)

Slide 30

Slide 30 text

Computational Screening Descriptors A. M. Ganose et al, Chem. Comm. 53, 20 (2017) BAND GAP OPTICAL ABSORPTION EFFECTIVE MASS DEFECT PHYSICS e-h RECOMBINATION BAND OFFSETS

Slide 31

Slide 31 text

V-VI-VII Chalcohalide Semiconductors Energy Environmental Science 8, 838 (2015); APL 108, 112103 (2016) Trivalent cation with monovalent & divalent anions V VI VII Bi O F Sb S Cl Se Br Te I Ferroelectrics Photocatalysts Solar Cell Absorbers Topological Conductors

Slide 32

Slide 32 text

V-VI-VII Chalcohalide Semiconductors Energy Environmental Science 8, 838 (2015); APL 108, 112103 (2016) Trivalent cation with monovalent & divalent anions V VI VII Bi O F Sb S Cl Se Br Te I Ferroelectrics Photocatalysts Solar Cell Absorbers Topological Conductors

Slide 33

Slide 33 text

Conclusion and Outlook Many new materials being studied for solar energy conversion. Challenge is translation to efficient devices. Theory and simulation can help to identify and overcome bottlenecks. Project Collaborators: Keith Butler, Jarvist Frost, Jonathan Skelton, Lucy Whalley, Ruoxi Yang, Suzy Wallace (ICL); Simon Billinge (Columbia); Mark van Schilfgaarde (Kings); Bruno Erhler (AMOLF) Funding: ERC; EPSRC; Royal Society; Leverhulme Slides: https://speakerdeck.com/aronwalsh

Slide 34

Slide 34 text

Blank Slide

Slide 35

Slide 35 text

DGIST CZTSSe Record Certificate

Slide 36

Slide 36 text

Screening New Photoactive Materials Sustainability index From Searching over 4 Trillion Compounds… D. W. Davies et al, Chem 1, 617 (2016); https://github.com/WMD-group/SMACT