Slide 1

Slide 1 text

77th Tokyo.R @kilometer BeginneR Session 5 -- Data analysis -- 2019.04.13 at SONY Co.

Slide 2

Slide 2 text

Who!?

Slide 3

Slide 3 text

Who!? 名前: 三村 @kilometer 職業: ポスドク (こうがくはくし) 専⾨: ⾏動神経科学(霊⻑類) 脳イメージング 医療システム⼯学 R歴: ~ 10年ぐらい 流⾏: ベントー

Slide 4

Slide 4 text

BeginneR Session

Slide 5

Slide 5 text

BeginneR

Slide 6

Slide 6 text

BeginneR

Slide 7

Slide 7 text

Before After BeginneR Session BeginneR BeginneR

Slide 8

Slide 8 text

BeginneR Advanced Hoxo_m If I have seen further it is by standing on the sholders of Giants. -- Sir Isaac Newton, 1676

Slide 9

Slide 9 text

BeginneR Session 5 -- Data analysis --

Slide 10

Slide 10 text

What is Data?

Slide 11

Slide 11 text

What is Data? ℎ f X ℎℎ Truth Knowledge

Slide 12

Slide 12 text

What is Data? ℎ f X ℎℎ Truth Knowledge Modeling Modeling

Slide 13

Slide 13 text

“Strong” Hypothesis “Weaken” Hypothesis Data Data What is Data? Hypothesis Driven Data Driven

Slide 14

Slide 14 text

What is Data? f X ℎℎ . f X ℎℎ . ℎ ℎ Hypothesis Driven Data Driven

Slide 15

Slide 15 text

What is Data? Data is observed (partial) information about phenotype of the world. We can hypothesize a part of principle via statistical modeling with data.

Slide 16

Slide 16 text

What is the most frequently used standard popular simple modeling?

Slide 17

Slide 17 text

Regression Linear = + + Input Output coefficient intercept residual

Slide 18

Slide 18 text

Regression Linear = + + ~(0, ) Input Output coefficient intercept residual Normal (Gaussian) distribution mean standard deviation

Slide 19

Slide 19 text

Regression Linear = + + ~(0, ) Input Output coefficient intercept residual Normal (Gaussian) distribution mean standard deviation parameters

Slide 20

Slide 20 text

Before we begin...

Slide 21

Slide 21 text

Tools ①: pipe %>% ②: mutate

Slide 22

Slide 22 text

Tool①: pipe %>% X %>% f X %>% f(y) X %>% f %>% g X %>% f(y, .) f(X) f(X, y) g(f(X)) f(y, X)

Slide 23

Slide 23 text

Tool②: mutate

Slide 24

Slide 24 text

Regression Linear = + + ~(0, ) Input Output coefficient intercept residual Normal (Gaussian) distribution mean standard deviation parameters

Slide 25

Slide 25 text

[A , A ]

Slide 26

Slide 26 text

# set environment library(tidyverse) set.seed(123) # set parameters N <- 7 a <- 4 b <- 3 s <- 15 # make data sample dat <- data.frame(x = runif(N, 0, 10), mutate(y = a * x + b + e) # attach {package} # set random seed # data No. # coefficient # intercept # standard deviation Random number generator e = rnorm(N, 0, s)) %>%

Slide 27

Slide 27 text

# make data sample dat <- data.frame(x = runif(N, 0, 10), mutate(y = a * x + b + e) e = rnorm(N, 0, s)) %>%

Slide 28

Slide 28 text

# visualization ggplot(dat, aes(x, y))+ geom_point()

Slide 29

Slide 29 text

[A , A ] = +

Slide 30

Slide 30 text

[A , A ] = + E E E observed predicted

Slide 31

Slide 31 text

[A , A ] = + E E E E observed predicted

Slide 32

Slide 32 text

[A , A ] = + E E E observed predicted F predicted F unobserved E

Slide 33

Slide 33 text

# liner model fitting fit_lm <- lm(formula = y ~ x, data = dat) fit_lm <- lm(y ~ x, dat) abbreviated form (same meaning)

Slide 34

Slide 34 text

# liner model fitting fit_lm <- lm(y ~ x, dat) # view help ?lm

Slide 35

Slide 35 text

# liner model fitting fit_lm <- lm(y ~ x, dat) # view help ?lm Usage lm(formula, data, subset, weights, na.action, method = "qr", model = TRUE, ...)

Slide 36

Slide 36 text

# liner model fitting fit_lm <- lm(y ~ x, dat)

Slide 37

Slide 37 text

# liner model fitting fit_lm <- lm(y ~ x, dat)

Slide 38

Slide 38 text

[A , A ] = + E E E E observed predicted

Slide 39

Slide 39 text

[A , A ] = + E E E E observed predicted

Slide 40

Slide 40 text

[A , A ] = + E E E observed predicted F predicted F unobserved E unobserved F

Slide 41

Slide 41 text

dat <- data.frame(x = runif(N, 0, 10), e = rnorm(N, 0, s)) %>% mutate(y = a * x + b + e) dat_lm <- dat %>% mutate(predict = lm(y ~ x) %>% predict) E

Slide 42

Slide 42 text

# visualization ggplot(dat_lm)+ geom_point(aes(x, y))+ geom_point(aes(x, predict), color = "blue")

Slide 43

Slide 43 text

# visualization ggplot(dat_lm)+ geom_line(aes(x, predict), linetype = 2) geom_point(aes(x, y))+ geom_point(aes(x, predict), color = "blue")

Slide 44

Slide 44 text

ggplot(dat_lm)+ geom_path(aes(x, predict), size = 3, color = "darkgrey")+ geom_point(aes(x, y), size = 3)+ geom_segment(aes(x, y, xend = x, yend = predict), color = "blue", linetype = 1, size = 0.7)+ geom_point(aes(x, predict), size = 3, color = "blue")+ theme_classic()+ theme(text = element_text(size = 21))+ ylab("y") ggsave("plot.png", width = 5, height = 5)

Slide 45

Slide 45 text

ggplot(dat_lm)+ geom_path(aes(x, predict), size = 3, color = "darkgrey")+ geom_point(aes(x, y), size = 3)+ geom_segment(aes(x, y, xend = x, yend = predict), color = "blue", linetype = 1, size = 0.7)+ geom_point(aes(x, predict), size = 3, color = "blue")+ theme_classic()+ theme(text = element_text(size = 21))+ ylab("y") ggsave("plot.png", width = 5, height = 5)

Slide 46

Slide 46 text

[A , A ] = + , H ≅ 0.65

Slide 47

Slide 47 text

[A , A ] = + , H ≅ 0.65

Slide 48

Slide 48 text

= + , H ≅ 0.84 = + , H ≅ 0.62 = + , H ≅ 0.37 summary(fit_lm)$r.squared

Slide 49

Slide 49 text

= + E E E A − S S H = 1 − ∑ A H A ∑ A − S H A A Coefficient of determination = S

Slide 50

Slide 50 text

= + , H ≅ 0.84 = + , H ≅ 0.62 = + , H ≅ 0.37

Slide 51

Slide 51 text

= + , H ≅ 0.84 = + , H ≅ 0.62 = + , H ≅ 0.37 ~(0, = 5) ~(0, = 15) ~(0, = 25)

Slide 52

Slide 52 text

Regression Linear = W + + Input Output coefficient intercept residual Multiple Linear Regression = W + X X + H H + Input Output intercept coefficient residual coefficient Input

Slide 53

Slide 53 text

N <- 15; s <- 10; a0 <- 3; a1 <- 3; a2 <- 2 dat <- data.frame(x1 = runif(N, 0, 10), x2 = runif(N, 0, 10)) %>% mutate(y = a0 + a1 * x1 + a2 * x2 + rnorm(N, 0, s)) Multiple Linear Regression

Slide 54

Slide 54 text

Multiple Linear Regression plot(dat)

Slide 55

Slide 55 text

library(rgl) plot3d(dat) Multiple Linear Regression

Slide 56

Slide 56 text

N <- 15; s <- 10; a0 <- 3; a1 <- 3; a2 <- 2 dat <- data.frame(x1 = runif(N, 0, 10), x2 = runif(N, 0, 10)) %>% mutate(y = a0 + a1 * x1 + a2 * x2 + rnorm(N, 0, s)) Multiple Linear Regression fit_lm <- lm(y ~ x1 + x2, dat)

Slide 57

Slide 57 text

coeff <- fit_lm$coefficients plot3d(dat) planes3d(coeff[2], coeff[3], -1, coeff[1], alpha = 0.5) Multiple Linear Regression

Slide 58

Slide 58 text

Multiple Linear Regression W , X , H H

Slide 59

Slide 59 text

Agenda Introduction What is data? Liner Regression Multivariate Analysis 済 済 済

Slide 60

Slide 60 text

plot(dat)

Slide 61

Slide 61 text

X = XX X + XH [ + ⋯ + X] ] H = HX X + HH [ + ⋯ + H] ] [ = [X [ + [H [ + ⋯ + [] ] ⋮ X ⋮ ] = XX … X] ⋮ ⋱ ⋮ ]X … ]] X ⋮ ] Principal Component Analysis eigenvector matrix principal components

Slide 62

Slide 62 text

Principal Component Analysis fit_pca <- prcomp(dat, scale = T)

Slide 63

Slide 63 text

Principal Component Analysis fit_pca <- prcomp(dat, scale = T)

Slide 64

Slide 64 text

Principal Component Analysis compression

Slide 65

Slide 65 text

References

Slide 66

Slide 66 text

Agenda Introduction What is data? Liner Regression Multivariate Analysis 済 済 済 済

Slide 67

Slide 67 text

Appendix…

Slide 68

Slide 68 text

Nested data modeling

Slide 69

Slide 69 text

dat1 <- data.frame(...) dat_lm1 <- ... dat2 <- data.frame(...) dat_lm2 <- ... dat3 <- data.frame(...) dat_lm3 <- ... Nested data modeling

Slide 70

Slide 70 text

Nested data modeling

Slide 71

Slide 71 text

Nested data modeling

Slide 72

Slide 72 text

Nested data modeling

Slide 73

Slide 73 text

Nested data modeling

Slide 74

Slide 74 text

dat <- data.frame(x = runif(N, 0, 10)) %>% nest %>% list %>% rep(3) %>% bind_rows %>% rowid_to_column("id") %>% mutate(s = c(5, 10, 25)) Nested data modeling

Slide 75

Slide 75 text

dat <- data.frame(x = runif(N, 0, 10)) %>% nest %>% list %>% rep(3) %>% bind_rows %>% rowid_to_column("id") %>% mutate(s = c(5, 10, 25)) %>% mutate(data = map2(data, s, ~mutate(.x, y = a * x + b + rnorm(N, 0, .y)))) Nested data modeling

Slide 76

Slide 76 text

dat <- data.frame(x = runif(N, 0, 10)) %>% nest %>% list %>% rep(3) %>% bind_rows %>% rowid_to_column("id") %>% mutate(s = c(5, 10, 25)) %>% mutate(data = map2(data, s, ~mutate(.x, y = a * x + b + rnorm(N, 0, .y)))) %>% mutate(lm = map(data, ~lm(.$y ~ .$x)), predict = map(lm, predict)) Nested data modeling

Slide 77

Slide 77 text

dat <- data.frame(x = runif(N, 0, 10)) %>% nest %>% list %>% rep(3) %>% bind_rows %>% rowid_to_column("id") %>% mutate(s = c(5, 10, 25)) %>% mutate(data = map2(data, s, ~mutate(.x, y = a * x + b + rnorm(N, 0, .y)))) %>% mutate(lm = map(data, ~lm(.$y ~ .$x)), predict = map(lm, predict)) %>% mutate(r_sq = map_dbl(lm, ~summary(.)$r.squared), a = map_dbl(lm, ~.$coeff[2]), b = map_dbl(lm, ~.$coeff[1])) Nested data modeling

Slide 78

Slide 78 text

dat %>% select(id, data, predict) %>% unnest %>% ggplot(...)+ geom_...+ facet_wrap(~id) Nested data modeling

Slide 79

Slide 79 text

Nested data modeling

Slide 80

Slide 80 text

Nested data modeling

Slide 81

Slide 81 text

Summary

Slide 82

Slide 82 text

What is Data? ℎ f X ℎℎ Truth Knowledge Modeling Modeling

Slide 83

Slide 83 text

Regression Linear = + + ~(0, ) Input Output coefficient intercept residual Normal (Gaussian) distribution mean standard deviation parameters

Slide 84

Slide 84 text

# liner model fitting fit_lm <- lm(y ~ x, dat)

Slide 85

Slide 85 text

fit_lm <- lm(y ~ x1 + x2, dat) coeff <- fit_lm$coefficients plot3d(dat) planes3d(coeff[2], coeff[3], -1, coeff[1], alpha = 0.5) Multiple Linear Regression

Slide 86

Slide 86 text

X ⋮ ] = XX … X] ⋮ ⋱ ⋮ ]X … ]] X ⋮ ] Principal Component Analysis eigenvector matrix principal components fit_pca <- prcomp(dat, scale = T) biplot

Slide 87

Slide 87 text

Nested data modeling

Slide 88

Slide 88 text

Enjoy!!