Slide 82
Slide 82 text
参考文献
• D. Horvitz and D. Thompson, “A generalization of sampling without replacement from a finite
universe,” Journal of the American Statistical Association, 47(260):663-685, 1952.
• J. Robins, A. Rotnitzky, and L. P. Zhao, “Estimation of regression coefficients when some
regressors are not always observed,” Journal of the American Statistical Association,
89(427):846-866, 1994.
• V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins,
“Double/debiased machine learning for treatment and structural parameters,” The Econometrics
Journal, 21(1), 2018.
• J. Pearl, “Causality: Models, Reasoning, and Inference,” Cambridge University press, 2000.
• A. Alaa and M. Van der Schaar, “Bayesian nonparametric causal inference: Information rates and
learning algorithms,” IEEE Journal of Selected Topics in Signal Processing, 12(5):1031-1046, 2018.
• Hahn, P. Richard, Jared S. Murray, and Carlos M. Carvalho. "Bayesian regression tree models for
causal inference: Regularization, confounding, and heterogeneous effects (with discussion)."
Bayesian Analysis 15.3 (2020): 965-1056.
• Nie, Xinkun, and Stefan Wager. "Quasi-oracle estimation of heterogeneous treatment effects."
Biometrika 108.2 (2021): 299-319.
• V. Aglietti, T. Damoulas, M. A. Alvarez, J. Gonzalez, “Multi-task causal learning with Gaussian
processes,” In Proc. of the 34th International Conference on Neural Information Processing Systems
(NeurIPS 2020).
AI・データ利活用研究会 82