Slide 1

Slide 1 text

2017೥10݄9೔ ࡞ਤͱରশੑ ക࡚௚໵

Slide 2

Slide 2 text

ࠓ͔Β221 = 13 × 17೥લ Gaussਖ਼17֯ܗͷ࡞ਤ๏Λൃݟ 2017೥10݄7೔ mathpower2017

Slide 3

Slide 3 text

ਖ਼65537֯ܗͷ࡞ਤ

Slide 4

Slide 4 text

65537͸ʁ

Slide 5

Slide 5 text

ૉ਺

Slide 6

Slide 6 text

ϑΣϧϚʔૉ਺ 3 = 2 + 1 5 = 4 + 1 = 2 × 2 + 1 17 = 16 + 1 = 4 × 4 + 1 257 = 256 + 1 = 16 × 16 + 1 65537 = 65536 + 1 = 256 × 256 + 1

Slide 7

Slide 7 text

ͪͳΈʹ 4294967297 = 65536 × 65536 + 1 = 641 × 6700417 18446744073709551617 = 4294967296 × 4294967296 + 1 = 274177 × 67280421310721 · · · 65537͸ʢࠓͷͱ͜Ζʣ࠷େͷϑΣϧϚʔૉ਺

Slide 8

Slide 8 text

͍ͭͰ΋ ࡞ਤͰ͖Δʁ

Slide 9

Slide 9 text

ਖ਼3֯ܗͷ࡞ਤ

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

120◦

Slide 12

Slide 12 text

120◦ 60◦

Slide 13

Slide 13 text

60◦ 60◦ 60◦ 1 1 2

Slide 14

Slide 14 text

ίϯύεͱఆنΛ࢖͑͹ɺ௕͞Λೋ౳෼Ͱ͖Δɻ A B

Slide 15

Slide 15 text

௕͞1ͷઢ෼͔Β ௕͞ 1 2 ͷઢ෼Λ࡞Δ͜ͱ͕Ͱ͖ͨʂ

Slide 16

Slide 16 text

࡞ਤͰͰ͖Δ͜ͱ • ਨ௚ͳઢΛҾ͘ • ฏߦͳઢΛҾ͘ • ௕͞Λೋ౳෼͢Δ

Slide 17

Slide 17 text

ਖ਼3֯ܗͷ࡞ਤ

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

࡞ਤΛ͢Δ=৽͍͠௕͞Λ࡞Δ=৽͍͠਺Λ࡞Δ ௕͞1ͷઢ෼AB ͕༩͑ΒΕ͍ͯΔͱ͢Δɻ

Slide 23

Slide 23 text

࡞ਤͰͰ͖Δ͜ͱ • ਨ௚ͳઢΛҾ͘ • ฏߦͳઢΛҾ͘ • ௕͞Λೋ౳෼͢Δ • ௕͞ͷ଍͠ࢉͱҾ͖ࢉΛ͢Δ

Slide 24

Slide 24 text

௕͞ 4 3 ͷ࡞Γํ 3 4

Slide 25

Slide 25 text

࡞ਤͰͰ͖Δ͜ͱ • ਨ௚ͳઢΛҾ͘ • ฏߦͳઢΛҾ͘ • ௕͞Λೋ౳෼͢Δ • ௕͞ͷ଍͠ࢉͱҾ͖ࢉΛ͢Δ • ௕͞ͷֻ͚ࢉͱׂΓࢉΛ͢Δ

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

࣮͸ √ 3΋࡞ਤ͍ͯͨ͠

Slide 28

Slide 28 text

ϐλΰϥεͷఆཧ x2 + y2 = r2 √ 2ͷ࡞Γํ 1 1 √ 2

Slide 29

Slide 29 text

√ 5ͷ࡞Γํ 2 √ 5 3

Slide 30

Slide 30 text

ax2 + bx + c = 0 ͷղ͸ x = −b ± √ b2 − 4ac 2a a, b, c͕࡞ਤͰ͖͍ͯΕ͹ɺ͜Ε΋Ͱ͖Δ

Slide 31

Slide 31 text

ೋͭ߹Θͤͯೋ࣍ํఔࣜɻ A = (0, 1), B = (a, b)Λ௚ܘͷ྆୺ͱ͢Δԁͷࣜ x(x − a) + (y − 1)(y − b) = 0 ͜Εͱy = 0ͷަ఺͸ɺೋ࣍ํఔࣜ x2 − ax + b = 0 ͷղ

Slide 32

Slide 32 text

x2 + x − 1 = 0ͷղ x = −1 ± √ 5 2 O(0, 0) A(0, 1) B(−1, −1)

Slide 33

Slide 33 text

࡞ਤͰͰ͖Δ͜ͱ • ਨ௚ͳઢΛҾ͘ • ฏߦͳઢΛҾ͘ • ௕͞Λೋ౳෼͢Δ • ௕͞ͷ଍͠ࢉͱҾ͖ࢉΛ͢Δ • ௕͞ͷֻ͚ࢉͱׂΓࢉΛ͢Δ • ೋ࣍ํఔࣜΛղ͘

Slide 34

Slide 34 text

1 + √ 5, 1 + 1 + √ 5, . . . ͷΑ͏ͳ௕͞ͷઢ෼΋࡞ਤͰ͖Δ

Slide 35

Slide 35 text

ਖ਼5֯ܗͷ࡞ਤ

Slide 36

Slide 36 text

72◦

Slide 37

Slide 37 text

72◦

Slide 38

Slide 38 text

72◦ 36◦ 72◦

Slide 39

Slide 39 text

36◦ 36◦ 36◦ 72◦

Slide 40

Slide 40 text

O A B C D 36◦ 36◦ 36◦ 72◦

Slide 41

Slide 41 text

૬ࣅͳͷͰ OA : OC = OC : CD ͕ͨͬͯ͠OC = xͱͯ͠ 1 : x = x : 1 − x Ͱ͋Δɻ x2 + x − 1 = 0 ͷղΛ࡞ਤ͢Ε͹Α͍ɻ

Slide 42

Slide 42 text

ࡾ֯ؔ਺Λ࢖ͬͯߟ͑Δɻ θ cos θ 1

Slide 43

Slide 43 text

120◦ 1 − 1 2 cos 120◦ = cos 240◦ = − 1 2

Slide 44

Slide 44 text

cos 120◦ + cos 240◦ = −1

Slide 45

Slide 45 text

ࡾ֯ؔ਺ͷੑ࣭ cos(θ) = cos(360◦ − θ) cos(α + β) + cos(α − β) = 2 cos α cos β

Slide 46

Slide 46 text

cos 72◦ + cos 144◦ = 2 cos 72◦ cos 144◦ 2 cos2 72◦ − 1 = cos 144◦ Ͱ͋Δ͔Β cos 72◦+2 cos2 72◦−1 = 2 cos 72◦(2 cos2 72◦−1)

Slide 47

Slide 47 text

2 cos 72◦ = xͱͯ͠ 1 2 x + 2 4 x2 − 1 = x( 2 4 x2 − 1) 1 2 x3 − 1 2 x2 − 3 2 x + 1 = 0 x3 − x2 − 3x + 2 = 0 (x − 1)(x2 + x − 1) = 0 Ͱ͋Δɻ

Slide 48

Slide 48 text

x2 + x − 1 = 0 ͷղx = 2 cos 72◦, 2 cos 144◦ x = −1 ± √ 5 2 2 cos 72◦+2 cos 144◦ = −1 + √ 5 2 + −1 − √ 5 2 = −1

Slide 49

Slide 49 text

ղͱ܎਺ͷؔ܎ 2 cos 72◦ + 2 cos 144◦ = −1 cos 72◦ + cos 72◦ + cos 144◦ + cos 144◦ = −1 cos 72◦ + cos 144◦ + cos 216◦ + cos 288◦ = −1

Slide 50

Slide 50 text

ࡾ֯ؔ਺ͷੑ࣭ Ұൠʹ cos 360◦ N +cos 2 360◦ N +· · ·+cos(N−1) 360◦ N = −1 ҰൠʹN Λح਺ͱͯ͠ cos 360◦ N +cos 2 360◦ N +· · ·+cos N − 1 2 360◦ N = − 1 2

Slide 51

Slide 51 text

ೋ࣍ํఔࣜͷղͱ܎਺ͷؔ܎ x = α, β Λղʹ΋ͭೋ࣍ํఔࣜ (x − α)(x − β) = 0 x2 − (α + β)x + αβ = 0

Slide 52

Slide 52 text

x2 − ax + b = 0 ͷղ͕x = α, β ͳΒ a = α + β, b = αβ

Slide 53

Slide 53 text

ਖ਼17֯ܗͷ࡞ਤ

Slide 54

Slide 54 text

α = cos 1 · 360◦ 17 + cos 2 · 360◦ 17 + cos 4 · 360◦ 17 + cos 8 · 360◦ 17 β = cos 3 · 360◦ 17 + cos 5 · 360◦ 17 + cos 6 · 360◦ 17 + cos 7 · 360◦ 17

Slide 55

Slide 55 text

α + β = cos 1 · 360◦ 17 + cos 2 · 360◦ 17 + cos 3 · 360◦ 17 + cos 4 · 360◦ 17 + cos 5 · 360◦ 17 + cos 6 · 360◦ 17 + cos 7 · 360◦ 17 + cos 8 · 360◦ 17 = − 1 2

Slide 56

Slide 56 text

αβ = cos 1 · 360◦ 17 cos 3 · 360◦ 17 + cos 1 · 360◦ 17 cos 5 · 360◦ 17 + cos 1 · 360◦ 17 cos 6 · 360◦ 17 + cos 1 · 360◦ 17 cos 7 · 360◦ 17 + cos 2 · 360◦ 17 cos 3 · 360◦ 17 + cos 2 · 360◦ 17 cos 5 · 360◦ 17 + cos 2 · 360◦ 17 cos 6 · 360◦ 17 + cos 2 · 360◦ 17 cos 7 · 360◦ 17 + cos 4 · 360◦ 17 cos 3 · 360◦ 17 + cos 4 · 360◦ 17 cos 5 · 360◦ 17 + cos 4 · 360◦ 17 cos 6 · 360◦ 17 + cos 4 · 360◦ 17 cos 7 · 360◦ 17 + cos 8 · 360◦ 17 cos 3 · 360◦ 17 + cos 8 · 360◦ 17 cos 5 · 360◦ 17

Slide 57

Slide 57 text

No content

Slide 58

Slide 58 text

ࡾ֯ؔ਺ͷੑ࣭ cos(θ) = cos(360◦ − θ) cos(α + β) + cos(α − β) = 2 cos α cos β θ = 360◦ 17 ͱ͢Δɻ 17θ = 360◦

Slide 59

Slide 59 text

cos θ = cos 16θ cos 2θ = cos 15θ cos 3θ = cos 14θ cos 4θ = cos 13θ cos 5θ = cos 12θ cos 6θ = cos 11θ cos 7θ = cos 10θ cos 8θ = cos 9θ

Slide 60

Slide 60 text

ab = cos (1θ) cos (3θ) + cos (1θ) cos (5θ) + cos (1θ) cos (6θ) + cos (1θ) cos (7θ) + cos (2θ) cos (3θ) + cos (2θ) cos (5θ) + cos (2θ) cos (6θ) + cos (2θ) cos (7θ) + cos (4θ) cos (3θ) + cos (4θ) cos (5θ) + cos (4θ) cos (6θ) + cos (4θ) cos (7θ) + cos (8θ) cos (3θ) + cos (8θ) cos (5θ) + cos (8θ) cos (6θ) + cos (8θ) cos (7θ)

Slide 61

Slide 61 text

= 1 2 {cos (4θ) + cos (2θ) + cos (6θ) + cos (4θ) + cos (7θ) + cos (5θ) + cos (8θ) + cos (6θ) + cos (1θ) + cos (5θ) + cos (3θ) + cos (7θ) + cos (8θ) + cos (4θ) + cos (9θ) + cos (5θ) + cos (1θ) + cos (7θ) + cos (1θ) + cos (9θ) + cos (2θ) + cos (10θ) + cos (3θ) + cos (11θ) + cos (5θ) + cos (11θ) + cos (3θ) + cos (13θ) + cos (2θ) + cos (14θ) + cos (1θ) + cos (15θ)}

Slide 62

Slide 62 text

= 1 2 {cos (4θ) + cos (2θ) + cos (6θ) + cos (4θ) + cos (7θ) + cos (5θ) + cos (8θ) + cos (6θ) + cos (1θ) + cos (5θ) + cos (3θ) + cos (7θ) + cos (8θ) + cos (4θ) + cos (9θ) + cos (5θ) + cos (1θ) + cos (7θ) + cos (1θ) + cos (9θ) + cos (2θ) + cos (10θ) + cos (3θ) + cos (11θ) + cos (5θ) + cos (11θ) + cos (3θ) + cos (13θ) + cos (2θ) + cos (14θ) + cos (1θ) + cos (15θ)}

Slide 63

Slide 63 text

= 1 2 {cos (4θ) + cos (2θ) + cos (6θ) + cos (4θ) + cos (7θ) + cos (5θ) + cos (8θ) + cos (6θ) + cos (1θ) + cos (5θ) + cos (3θ) + cos (7θ) + cos (8θ) + cos (4θ) + cos (8θ) + cos (5θ) + cos (1θ) + cos (7θ) + cos (1θ) + cos (8θ) + cos (2θ) + cos (7θ) + cos (3θ) + cos (6θ) + cos (5θ) + cos (6θ) + cos (3θ) + cos (4θ) + cos (2θ) + cos (3θ) + cos (1θ) + cos (2θ)}

Slide 64

Slide 64 text

= 1 2 {cos (4θ) + cos (2θ) + cos (6θ) + cos (4θ) + cos (7θ) + cos (5θ) + cos (8θ) + cos (6θ) + cos (1θ) + cos (5θ) + cos (3θ) + cos (7θ) + cos (8θ) + cos (4θ) + cos (8θ) + cos (5θ) + cos (1θ) + cos (7θ) + cos (1θ) + cos (8θ) + cos (2θ) + cos (7θ) + cos (3θ) + cos (6θ) + cos (5θ) + cos (6θ) + cos (3θ) + cos (4θ) + cos (2θ) + cos (3θ) + cos (1θ) + cos (2θ)}

Slide 65

Slide 65 text

= 1 2 {cos (4θ) + cos (2θ) + cos (6θ) + cos (4θ) + cos (7θ) + cos (5θ) + cos (8θ) + cos (6θ) + cos (1θ) + cos (5θ) + cos (3θ) + cos (7θ) + cos (8θ) + cos (4θ) + cos (8θ) + cos (5θ) + cos (1θ) + cos (7θ) + cos (1θ) + cos (8θ) + cos (2θ) + cos (7θ) + cos (3θ) + cos (6θ) + cos (5θ) + cos (6θ) + cos (3θ) + cos (4θ) + cos (2θ) + cos (3θ) + cos (1θ) + cos (2θ)}

Slide 66

Slide 66 text

= 1 2 {cos (4θ) + cos (2θ) + cos (6θ) + cos (4θ) + cos (7θ) + cos (5θ) + cos (8θ) + cos (6θ) + cos (1θ) + cos (5θ) + cos (3θ) + cos (7θ) + cos (8θ) + cos (4θ) + cos (8θ) + cos (5θ) + cos (1θ) + cos (7θ) + cos (1θ) + cos (8θ) + cos (2θ) + cos (7θ) + cos (3θ) + cos (6θ) + cos (5θ) + cos (6θ) + cos (3θ) + cos (4θ) + cos (2θ) + cos (3θ) + cos (1θ) + cos (2θ)}

Slide 67

Slide 67 text

= 1 2 {cos (4θ) + cos (2θ) + cos (6θ) + cos (4θ) + cos (7θ) + cos (5θ) + cos (8θ) + cos (6θ) + cos (1θ) + cos (5θ) + cos (3θ) + cos (7θ) + cos (8θ) + cos (4θ) + cos (8θ) + cos (5θ) + cos (1θ) + cos (7θ) + cos (1θ) + cos (8θ) + cos (2θ) + cos (7θ) + cos (3θ) + cos (6θ) + cos (5θ) + cos (6θ) + cos (3θ) + cos (4θ) + cos (2θ) + cos (3θ) + cos (1θ) + cos (2θ)}

Slide 68

Slide 68 text

= 1 2 {cos (4θ) + cos (2θ) + cos (6θ) + cos (4θ) + cos (7θ) + cos (5θ) + cos (8θ) + cos (6θ) + cos (1θ) + cos (5θ) + cos (3θ) + cos (7θ) + cos (8θ) + cos (4θ) + cos (8θ) + cos (5θ) + cos (1θ) + cos (7θ) + cos (1θ) + cos (8θ) + cos (2θ) + cos (7θ) + cos (3θ) + cos (6θ) + cos (5θ) + cos (6θ) + cos (3θ) + cos (4θ) + cos (2θ) + cos (3θ) + cos (1θ) + cos (2θ)}

Slide 69

Slide 69 text

= 1 2 {cos (4θ) + cos (2θ) + cos (6θ) + cos (4θ) + cos (7θ) + cos (5θ) + cos (8θ) + cos (6θ) + cos (1θ) + cos (5θ) + cos (3θ) + cos (7θ) + cos (8θ) + cos (4θ) + cos (8θ) + cos (5θ) + cos (1θ) + cos (7θ) + cos (1θ) + cos (8θ) + cos (2θ) + cos (7θ) + cos (3θ) + cos (6θ) + cos (5θ) + cos (6θ) + cos (3θ) + cos (4θ) + cos (2θ) + cos (3θ) + cos (1θ) + cos (2θ)}

Slide 70

Slide 70 text

= 1 2 {cos (4θ) + cos (2θ) + cos (6θ) + cos (4θ) + cos (7θ) + cos (5θ) + cos (8θ) + cos (6θ) + cos (1θ) + cos (5θ) + cos (3θ) + cos (7θ) + cos (8θ) + cos (4θ) + cos (8θ) + cos (5θ) + cos (1θ) + cos (7θ) + cos (1θ) + cos (8θ) + cos (2θ) + cos (7θ) + cos (3θ) + cos (6θ) + cos (5θ) + cos (6θ) + cos (3θ) + cos (4θ) + cos (2θ) + cos (3θ) + cos (1θ) + cos (2θ)}

Slide 71

Slide 71 text

= 1 2 {cos (4θ) + cos (2θ) + cos (6θ) + cos (4θ) + cos (7θ) + cos (5θ) + cos (8θ) + cos (6θ) + cos (1θ) + cos (5θ) + cos (3θ) + cos (7θ) + cos (8θ) + cos (4θ) + cos (8θ) + cos (5θ) + cos (1θ) + cos (7θ) + cos (1θ) + cos (8θ) + cos (2θ) + cos (7θ) + cos (3θ) + cos (6θ) + cos (5θ) + cos (6θ) + cos (3θ) + cos (4θ) + cos (2θ) + cos (3θ) + cos (1θ) + cos (2θ)}

Slide 72

Slide 72 text

= 1 2 {cos (4θ) + cos (2θ) + cos (6θ) + cos (4θ) + cos (7θ) + cos (5θ) + cos (8θ) + cos (6θ) + cos (1θ) + cos (5θ) + cos (3θ) + cos (7θ) + cos (8θ) + cos (4θ) + cos (8θ) + cos (5θ) + cos (1θ) + cos (7θ) + cos (1θ) + cos (8θ) + cos (2θ) + cos (7θ) + cos (3θ) + cos (6θ) + cos (5θ) + cos (6θ) + cos (3θ) + cos (4θ) + cos (2θ) + cos (3θ) + cos (1θ) + cos (2θ)}

Slide 73

Slide 73 text

= 1 2 (4 cos (1θ) + 4 cos (2θ) + 4 cos (3θ) + 4 cos (4θ) + 4 cos (5θ) + 4 cos (6θ) + 4 cos (7θ) + 4 cos (8θ)) = −1 α + β = − 1 2 αβ = −1

Slide 74

Slide 74 text

α, β ͸ x2 + 1 2 x − 1 = 0 ͷղͰ͋Δɻ ίϯύεͱఆنͰαͷ௕͞ͷઢ෼ͱβ ͷ௕͞ͷઢ ෼Λ࡞ਤͰ͖Δɻ

Slide 75

Slide 75 text

࣍ʹ γ = cos 1 · 360◦ 17 + cos 4 · 360◦ 17 = cos (1θ) + cos (4θ) δ = cos 2 · 360◦ 17 + cos 8 · 360◦ 17 = cos (2θ) + cos (8θ) ʹ͍ͭͯγ + δ, γδΛܭࢉͯ͠ΈΔɻ

Slide 76

Slide 76 text

γ + δ = cos (1θ) + cos (4θ) + cos (2θ) + cos (8θ) = α

Slide 77

Slide 77 text

γδ = (cos (1θ) + cos (4θ))(cos (2θ) + cos (3θ)) = cos (1θ) cos (2θ) + cos (4θ) cos (2θ) + cos (1θ) cos (3θ) + cos (4θ) cos (3θ) = 1 2 (cos (3θ) + cos (1θ) + cos (2θ) + cos (6θ) + cos (7θ) + cos (9θ) + cos (4θ) + cos (12θ)) = 1 2 (cos (3θ) + cos (1θ) + cos (2θ) + cos (6θ) + cos (7θ) + cos (8θ) + cos (4θ) + cos (5θ))

Slide 78

Slide 78 text

γ + δ = α γδ = − 1 4 γ, δ͸ x2 − αx − 1 4 = 0 ͷղͰ͋Δɻ

Slide 79

Slide 79 text

ίϯύεͱఆنͰ γ = cos 1 · 360◦ 17 + cos 4 · 360◦ 17 δ = cos 2 · 360◦ 17 + cos 8 · 360◦ 17 ͷ௕͞ͷઢ෼Λ࡞ਤͰ͖Δɻ

Slide 80

Slide 80 text

cos 1 · 360◦ 17 cos 4 · 360◦ 17 = 1 2 (cos 3 · 360◦ 17 + cos 5 · 360◦ 17 )

Slide 81

Slide 81 text

࣍ʹ ϵ = cos 3 · 360◦ 17 + cos 5 · 360◦ 17 = cos (3θ) + cos (5θ) ζ = cos 6 · 360◦ 17 + cos 7 · 360◦ 17 = cos (6θ) + cos (7θ) ʹ͍ͭͯϵ + ζ, ϵζ Λܭࢉͯ͠ΈΔɻ

Slide 82

Slide 82 text

ϵ + ζ = cos (3θ) + cos (5θ) + cos (6θ) + cos (7θ) = β

Slide 83

Slide 83 text

ϵζ = (cos (3θ) + cos (5θ))(cos (6θ) + cos (7θ)) = cos (3θ) cos (6θ) + cos (5θ) cos (6θ) + cos (3θ) cos (7θ) + cos (5θ) cos (7θ) = 1 2 (cos (9θ) + cos (3θ) + cos (11θ) + cos (1θ) + cos (10θ) + cos (4θ) + cos (12θ) + cos (2θ)) = 1 2 (cos (8θ) + cos (3θ) + cos (6θ) + cos (1θ) + cos (7θ) + cos (4θ) + cos (5θ) + cos (2θ))

Slide 84

Slide 84 text

ϵ + ζ = β ϵζ = − 1 4 ϵ, ζ ͸ x2 − βx − 1 4 = 0 ͷղͰ͋Δɻ

Slide 85

Slide 85 text

·ͱΊΔͱ 1. x2 + 1 2 x − 1 = 0 ͷղx = α, β Λ࡞ਤ͢Δɻ 2. x2 − αx − 1 4 = 0 ͷղx = γ, δΛ࡞ਤ͢Δɻ

Slide 86

Slide 86 text

3. x2 − βx − 1 4 = 0 ͷղx = ϵ, ζ Λ࡞ਤ͢Δɻ 4. x2 − γx + 1 2 ϵ = 0 ͷղx = cos 360◦ 17 ͕࡞ਤͰ͖Δɻ

Slide 87

Slide 87 text

ਖ਼7֯ܗͷ࡞ਤ

Slide 88

Slide 88 text

ࡾ֯ؔ਺ͷੑ࣭ Ұൠʹ cos 360◦ N +cos 2 360◦ N +· · ·+cos(N−1) 360◦ N = −1 ҰൠʹN Λح਺ͱͯ͠ cos 360◦ N +cos 2 360◦ N +· · ·+cos N − 1 2 360◦ N = − 1 2

Slide 89

Slide 89 text

cos 1 · 360◦ 7 + cos 2 · 360◦ 7 + cos 3 · 360◦ 7 = − 1 2

Slide 90

Slide 90 text

ഒ֯ͷެࣜ cos 2 · 360◦ 7 = 2 cos 1 · 360◦ 7 2 − 1 3ഒ֯ͷެࣜ cos 3 · 360◦ 7 = 4 cos 1 · 360◦ 7 3 − 3 cos 1 · 360◦ 7

Slide 91

Slide 91 text

cos 1 · 360◦ 7 + 2 cos 1 · 360◦ 7 2 − 1 + 4 cos 1 · 360◦ 7 3 − 3 cos 1 · 360◦ 7 = − 1 2 ΛΈͨ͢ɻ

Slide 92

Slide 92 text

ͭ·Γɺcos 1 · 360◦ 7 ͸ࡾ࣍ํఔࣜ 4x3 + 2x2 − 2x − 1 2 = 0 ͷղʹͳΔɻ͜Ε͕࡞ਤͰ͖Δ͔ʁ

Slide 93

Slide 93 text

΋͠ೋ࣍ํఔࣜͷղʹ΋ͳͬͨͱ͢Δɻଟ߲ࣜͷ ׂΓࢉΛ͢Δͱ 4x3+2x2−2x− 1 2 = (ax2+bx+c)(dx+e)+fx+g Ͱ͋Γɺ fx + g = 0 ΋ຬͨ͞ͳ͚Ε͹͍͚ͳ͍ɻ

Slide 94

Slide 94 text

࡞ਤͰ͖ͳ͍ʂ

Slide 95

Slide 95 text

ෳૉ਺Ͱߟ͑Δɻ eiθ = cos θ + i sin θ ei360◦ = cos 360◦ + i sin 360◦ = 1 eiαeiβ = eiα+iβ (eiθ)n = eniθ

Slide 96

Slide 96 text

(ei 360◦ 3 )3 = (e3i 360◦ 3 ) = 1 x3 = 1 x3 − 1 = (x − 1)(x2 + x + 1) = 0

Slide 97

Slide 97 text

x = ei 360◦ 3 , e2i 360◦ 3 ͸x2 + x + 1 = 0ͷղͰ͋Δ

Slide 98

Slide 98 text

(ei 360◦ 5 )5 = (e5i 360◦ 5 ) = 1 x5 = 1 x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1) = 0 x = ei 360◦ 5 , e2i 360◦ 5 , e3i 360◦ 5 , e4i 360◦ 5 ͸x4 + x3 + x2 + x + 1 = 0ͷղͰ͋Δ

Slide 99

Slide 99 text

(ei 360◦ 7 )7 = (e7i 360◦ 7 ) = 1 x7 = 1 x7−1 = (x−1)(x6+x5+x4+x3+x2+x+1) = 0 x =ei 360◦ 7 , e2i 360◦ 7 , e3i 360◦ 7 e4i 360◦ 7 , e5i 360◦ 7 , e6i 360◦ 7 ͸x6 + x5 + x4 + x3 + x2 + x + 1 = 0ͷղͰ͋Δ

Slide 100

Slide 100 text

ಉ͡ํఔࣜͷղ͸ೖΕସ͑ͯ΋۠ผͰ͖ͳ͍ʂ

Slide 101

Slide 101 text

ͲΕ͚ͩೖΕସ͕͑͋Δ͔ʁ ࢛ଇԋࢉ͸อͬͨ··ɺ਺ͷೖΕସ͑Λߟ͑Δɻ

Slide 102

Slide 102 text

ೋ࣍ํఔࣜͷ৔߹ −b + √ b2 − 4ac 2 , −b − √ b2 − 4ac 2 ΛೖΕସ͑Δɻ

Slide 103

Slide 103 text

x4 + x3 + x2 + x + 1 = 0 ͷղͷೖΕସ͑͸ͲΕ͚ͩ͋Δ͔ʁ

Slide 104

Slide 104 text

ei 360◦ 5 → e2i 360◦ 5 ͱͨ͠ͱ͢Δɻ͢Δͱ e2i 360◦ 5 = ei 360◦ 5 · ei 360◦ 5 → e2i 360◦ 5 · e2i 360◦ 5 = e4i 360◦ 5

Slide 105

Slide 105 text

e3i 360◦ 5 = ei 360◦ 5 · ei 360◦ 5 · ei 360◦ 5 → e2i 360◦ 5 · e2i 360◦ 5 · e2i 360◦ 5 = e6i 360◦ 5 = ei 360◦ 5 e4i 360◦ 5 = ei 360◦ 5 · ei 360◦ 5 · ei 360◦ 5 · ei 360◦ 5 → e2i 360◦ 5 · e2i 360◦ 5 · e2i 360◦ 5 · e2i 360◦ 5 = e8i 360◦ 5 = e3i 360◦ 5 ͱ࢒Γͷղͷߦ͖ઌ΋ࣗಈతʹܾ·ͬͯ͠·͏ɻ

Slide 106

Slide 106 text

Ͱ͸ei 360◦ 5 ͷߦ͖ઌ͸Կछྨ͋Δ͔ʁ ಉ͡ํఔࣜͷղͰ͋Δ ei 360◦ 5 , e2i 360◦ 5 , e3i 360◦ 5 , e4i 360◦ 5 ͷ4छྨ ͭ·Γ x4 + x3 + x2 + x + 1 = 0 ͷղͷೖΕସ͑͸4छྨ͋Δɻ

Slide 107

Slide 107 text

ei 360◦ 5 + e4i 360◦ 5 ͸͜ͷ4छྨͷೖΕସ͑ͰͲͷΑ ͏ʹมԽ͢Δ͔ʁ e2i 360◦ 5 + e3i 360◦ 5 ͱೖΕସΘΔ͔ೖΕସΘΒͳ͍ ͔ͲͪΒ͔ɻ ೋ࣍ํఔࣜͷղʹͳΔʂ

Slide 108

Slide 108 text

x6 + x5 + x4 + x3 + x2 + x + 1 = 0 ͷղͷೖΕସ͑͸ͲΕ͚ͩ͋Δ͔ʁ

Slide 109

Slide 109 text

ei 360◦ 7 Λe2i 360◦ 7 ͷߦ͖ઌΛܾΊΕ͹ࣗಈతʹܾ ·Δ શ෦Ͱ6௨Γ

Slide 110

Slide 110 text

ei 360◦ 7 + e6i 360◦ 7 ͸ e2i 360◦ 7 + e5i 360◦ 7 , e3i 360◦ 7 + e4i 360◦ 7 ͷ͍ͣΕ͔ʹͳΔɻ ࡾ࣍ํఔࣜͷղʹͳΔʂ

Slide 111

Slide 111 text

p৐ͯ͠1ʹͳΔ਺ͷํఔࣜ p − 1छྨͷղͷೖΕସ͑ p − 1ͷ໿਺kʹରԠͯ͠͏·͘ղͷ૊Έ߹Θͤ Λ࡞Δ p − 1/kݸͷ૬ํ ح਺࣍ͷํఔ͕ࣜग़ͯ͘Δͱ࡞ਤͰ͖ͳ͍ɻ

Slide 112

Slide 112 text

ͭ·Γp − 1͕2Ҏ֎ͰׂΕΔͱೋ࣍ํఔࣜҎ֎ ͷํఔࣜΛղ͔ͳ͚Ε͹ͳΒͳ͍ʂ ਖ਼p֯ܗ͕࡞ਤͰ͖ΔͨΊʹ͸p − 1 = 2n ͱ͍͏ ܗʹͳΔ͜ͱ͕ඞཁɻ

Slide 113

Slide 113 text

Fermatૉ਺ʂ