Slide 1

Slide 1 text

No content

Slide 2

Slide 2 text

How to AI in JS? Asim Hussain Developer Advocate Microsoft AI JavaScript Rocks

Slide 3

Slide 3 text

Asim Hussain @jawache codecraft.tv microsoft.com

Slide 4

Slide 4 text

https://aka.ms/jawache-cda @jawache

Slide 5

Slide 5 text

@jawache

Slide 6

Slide 6 text

Asim Web Development Machine Learning This is @EleanorHaproff's slide

Slide 7

Slide 7 text

No content

Slide 8

Slide 8 text

Opinion @jawache

Slide 9

Slide 9 text

TheMojifier™ @jawache

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

@jawache

Slide 12

Slide 12 text

Calculate Emotion @jawache

Slide 13

Slide 13 text

https://towardsdatascience.com/facial-keypoints-detection-deep-learning-737547f73515

Slide 14

Slide 14 text

Use an Artificial Neural Network @jawache

Slide 15

Slide 15 text

Artificial Neural Networks Axon Dendrites Axons Body @jawache

Slide 16

Slide 16 text

Artificial Neural Networks 1 23 8.6 -0.5 2.1 Activation Function @jawache

Slide 17

Slide 17 text

Artificial Neural Networks 1 23 8.6 -0.5 2.1 x x activation(...) = -11.5 = 18.06 7.01 !-> !-> } @jawache

Slide 18

Slide 18 text

Output 0 0 1 Input Artificial Neural Networks @jawache

Slide 19

Slide 19 text

Output 0 -1 1 Input Artificial Neural Networks TanH @jawache

Slide 20

Slide 20 text

Output 0 0 1 Input Artificial Neural Networks Relu @jawache

Slide 21

Slide 21 text

Artificial Neural Networks 1.1 4.2 0.3 4 12 93 3 @jawache

Slide 22

Slide 22 text

Artificial Neural Networks 1.1 4.2 0.3 4 12 93 3 - 8 = -5 @jawache

Slide 23

Slide 23 text

Artificial Neural Networks 1.1 4.2 0.3 4 12 93 3 - 8 = -5 @jawache

Slide 24

Slide 24 text

Artificial Neural Networks 0.1 9.2 0.2 4 12 93 8 @jawache

Slide 25

Slide 25 text

@jawache https://azure.microsoft.com/services/cognitive-services/face/

Slide 26

Slide 26 text

https:!//.api.cognitive.microsoft.com/face/v1.0/detect { "url": "" } @jawache

Slide 27

Slide 27 text

@jawache

Slide 28

Slide 28 text

Summary @jawache

Slide 29

Slide 29 text

• Neural Networks are incredibly powerful • Conceptually, they are simple to understand @jawache Summary

Slide 30

Slide 30 text

TensorFlow, MobileNet & I'm fine @jawache

Slide 31

Slide 31 text

@jawache

Slide 32

Slide 32 text

@jawache

Slide 33

Slide 33 text

@jawache

Slide 34

Slide 34 text

TensorFlow.js @jawache

Slide 35

Slide 35 text

TensorFlow.js Train models Load pre-trained models @jawache

Slide 36

Slide 36 text

https://github.com/tensorflow/tfjs-models @jawache MobileNet

Slide 37

Slide 37 text

https://azure.microsoft.com/services/cognitive-services/computer-vision/ @jawache

Slide 38

Slide 38 text

https://codepen.io/sdras/full/jawPGa/ @jawache

Slide 39

Slide 39 text

@jawache https://twitter.com/ollee/status/930303340516216832

Slide 40

Slide 40 text

@jawache https://twitter.com/FrontendNE/status/930120267992616960

Slide 41

Slide 41 text

@jawache https://twitter.com/chrispiecom/status/930407801402347520

Slide 42

Slide 42 text

Summary @jawache

Slide 43

Slide 43 text

• TensorFlow.js doesn't have any dependancies • MobileNet is a simple way to analyse images • Azure Computer Vision API ❤ @jawache Summary

Slide 44

Slide 44 text

Image2Image @jawache

Slide 45

Slide 45 text

DEMO @jawache https://zaidalyafeai.github.io/pix2pix/cats.html

Slide 46

Slide 46 text

@jawache Generator Discriminator ✅ ❌

Slide 47

Slide 47 text

@jawache Generator Discriminator ✅ ❌

Slide 48

Slide 48 text

@jawache Generator Discriminator ✅ ✅

Slide 49

Slide 49 text

@jawache

Slide 50

Slide 50 text

@jawache

Slide 51

Slide 51 text

@jawache

Slide 52

Slide 52 text

@jawache https://github.com/NVIDIA/vid2vid

Slide 53

Slide 53 text

@jawache https://github.com/NVIDIA/vid2vid

Slide 54

Slide 54 text

@jawache https://github.com/NVIDIA/vid2vid

Slide 55

Slide 55 text

https://github.com/NVIDIA/vid2vid @jawache

Slide 56

Slide 56 text

@jawache https://github.com/hanzhanggit/StackGAN

Slide 57

Slide 57 text

Summary @jawache

Slide 58

Slide 58 text

• GANs learn to generate new images • They take a lot of compute to train • But the generator model can be run in the browser @jawache Summary

Slide 59

Slide 59 text

@jawache aka.ms/mojifier

Slide 60

Slide 60 text

@jawache themojifer.com

Slide 61

Slide 61 text

Tero Parviainen creative.ai Music and AI in the Browser with TensorFlow.js and Magenta.js

Slide 62

Slide 62 text

Thoughts @jawache

Slide 63

Slide 63 text

Asim Hussain @jawache codecraft.tv microsoft.com