Slide 9
Slide 9 text
Estimating the lower bound gradients
We need to compute
∂L(Θ,Φ,x)
∂Θ
, ∂L(Θ,Φ,x)
∂φ to apply gradient
descent
For that, we use the reparametrisation trick : we sample
from a noise variable
p( ) and apply a determenistic function
to it so that we obtain correct samples from
q
φ(z|x), meaning:
if ∼ p( ) we nd g so that if z = g(x, φ, ) then z ∼ q
φ
(z|x)
g can be the inverse CDF of q
Φ
(z|x) if is uniform
With the reparametrisation trick we can rewrite L:
L(Θ, Φ, x) = E ∼p( )
[logp
Θ(x, g(x, φ, )) − logq
φ
(g(x, φ, )|x)]
We then estimate the gradients with Monte Carlo
Diederik P Kingma, Max Welling Auto-encoding variational Bayes