Slide 1

Slide 1 text

1 / 18 Neural Networks    

Slide 2

Slide 2 text

2 / 18 1. NN  !      • Residual Network • Batch Normalization 2. 1.   •   •  

Slide 3

Slide 3 text

3 / 18 Plain NNs(&) '   pros #% "  (ex. CNN, RNN, ...) cons !  $ $ 

Slide 4

Slide 4 text

4 / 18 RNN  RNN [1] P. Razvan et al ,"On the difficulty of training recurrent neural networks." International Conference on Machine Learning. 2013. !"#$ !" %"&$ %"#$ %" %"&$ '() '() '() '*+, '*+, -!"# = /(!!"# ) -! -!$# %! : input !! :   hidden state '%&' :   '() : input /   !" = '*+, 2 !"#$ + '() %"

Slide 5

Slide 5 text

5 / 18 !" !# !$ %" %# %$ &'( &'( &'( &)*+ &)*+ ,! = .(!! ) ," ,# RNN  3 1, 12 = 1," 12 + 1,# 12 + 1,$ 12 1,$ 12 = 4 "565$ 1,$ 1!$ 7 1!$ 1!6 7 18!6 12 1!$ 1!" = 1!$ 1!# 7 1!# 1!" = &)*+ 9 :;<= >? !# 7 &)*+ 9 :;<= >? !" @A!B @C : !" ~!6E" fix !6  

Slide 6

Slide 6 text

6 / 18 RNN  Vanishing/Exploding Gradient : !"#$ !%&  '( )( … … )* '* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/

Slide 7

Slide 7 text

7 / 18 ,$+ /' !"#$ !- !"#$ 2 % × '()* + ×%,- → # !"#$      !"#$ . 2 % × '()*(+).,-×%,-   1%input   or 1)* Loss(  RNN ."0& Vanishing/Exploding Gradient

Slide 8

Slide 8 text

8 / 18 +$   DeepNN(  ! + " )*&!/#% '  (→ ! Loss func ! Loss func   → Residual Connection, Batch No malization 

Slide 9

Slide 9 text

9 / 18 0), : Residual Connection – -– F(x) "/#2 → "/ F(x) + x  → (4 '$"/ Identity Mapping +%*1&: 3 . !   3  Identity – [1] He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer, Cham, 2016.

Slide 10

Slide 10 text

10 / 18  : Residual Connection –– ' Forward   $#& Backward  !$"& Deep  %   & input

Slide 11

Slide 11 text

11 / 18 Residual Connection –– https://icml.cc/2016/tutorials/icml2016_tutorial_deep_residual_networks_kaiminghe.pdf

Slide 12

Slide 12 text

12 / 18 ResNet  Batch Normalization ResNet Residual Block • ImplementationBatch Normalization NN ! $# • Batch Normalization"    ## http://torch.ch/blog/2016/02/04/resnets.html Plain

Slide 13

Slide 13 text

13 / 18  (  ) 1  2  ( ) n   … Batch Normalization –Revisit Gaussian-    

Slide 14

Slide 14 text

14 / 18 Batch Normalization -Input Data distribution    -  (Convergence) !! Input NN  →  input   

Slide 15

Slide 15 text

15 / 18 Batch Normalization -distribution - !"#$% & ' = ) & ' ← ' − , - ~/(,, -2)     input  

Slide 16

Slide 16 text

16 / 18 Batch Normalization Data distribution ●   =(!, ")fix ● Batch Normalization      Batch Normalization    

Slide 17

Slide 17 text

17 / 18 Batch Normalization –   [2]Ioffe, Sergey, and Christian Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." (2015). !, # !%$( →  normalize scaling '"&#   nomalize

Slide 18

Slide 18 text

18 / 18    DeepNN+  ! / & -"#.#)%/'( *$ +!→   ,  Identity – normalize  scaling implement  Deep Net