Slide 1

Slide 1 text

Mohit Sarveiya Building State Flows with Compose @heyitsmohit

Slide 2

Slide 2 text

Building State Flows with Compose ● How to setup and use Molecule

Slide 3

Slide 3 text

Building State Flows with Compose ● How to setup and use Molecule ● Design Patterns

Slide 4

Slide 4 text

Building State Flows with Compose ● How to setup and use Molecule ● Design Patterns ● Testing with Molecule

Slide 5

Slide 5 text

Building State Flows with Compose ● How to setup and use Molecule ● Design Patterns ● Testing with Molecule ● Molecule Internals

Slide 6

Slide 6 text

Building State Flows with Compose

Slide 7

Slide 7 text

Building State Flows with Compose

Slide 8

Slide 8 text

Compose vs Compose UI

Slide 9

Slide 9 text

Compose ● General purpose tool for managing tree of nodes.

Slide 10

Slide 10 text

Compose ● General purpose tool for managing tree of nodes.

Slide 11

Slide 11 text

Compose ● General purpose tool for managing tree of nodes. Node can be anything

Slide 12

Slide 12 text

Compose ● Compose Runtime ● Kotlin Complier Plugin ● State Snapshot System

Slide 13

Slide 13 text

Compose UI ● UI Toolkit Views

Slide 14

Slide 14 text

Molecule @Composable fun MoleculePresenter( events: Flow, ): Model

Slide 15

Slide 15 text

Molecule @Composable fun MoleculePresenter( events: Flow, ): Model Compose Runtime

Slide 16

Slide 16 text

Molecule @Composable fun MoleculePresenter( events: Flow, ): Model Compose Runtime State Flow 
 
 Flow

Slide 17

Slide 17 text

val userFlow = db.userObservable() val balanceFlow = db.balanceObservable()

Slide 18

Slide 18 text

@Composable fun ProfileScreen() { val user by userFlow.subscribeAsState(null) val balance by balanceFlow.subscribeAsState(0L) if (user == null) { Text("Loading…") } else { Text("${user.name} - $balance") } }

Slide 19

Slide 19 text

@Composable fun ProfileScreen() { val user by userFlow.subscribeAsState(null) val balance by balanceFlow.subscribeAsState(0L) if (user == null) { Text("Loading…") } else { Text("${user.name} - $balance") } }

Slide 20

Slide 20 text

@Composable fun ProfileScreen() { val user by userFlow.subscribeAsState(null) val balance by balanceFlow.subscribeAsState(0L) if (user == null) { Text("Loading…") } else { Text("${user.name} - $balance") } } Undesired coupling

Slide 21

Slide 21 text

@Composable fun ProfileScreen() { val user by userFlow.subscribeAsState(null) val balance by balanceFlow.subscribeAsState(0L) if (user == null) { Text("Loading…") } else { Text("${user.name} - $balance") } } Not Reusable

Slide 22

Slide 22 text

class ProfilePresenter(val db: Db) { fun transform(events: Flow) : Flow { } }

Slide 23

Slide 23 text

class ProfilePresenter(val db: Db) { fun transform(events: Flow) : Flow { } } sealed interface ProfileModel { object Loading : ProfileModel data class Data( val name: String, val balance: Long, ): ProfileModel }

Slide 24

Slide 24 text

class ProfilePresenter(val db: Db) { fun transform(events: Flow) : Flow { }

Slide 25

Slide 25 text

class ProfilePresenter(val db: Db) { fun transform(events: Flow) : Flow { return combine( db.users().onStart { emit(null) }, db.balances().onStart { emit(0L) }, ) { user, balance -> } } }

Slide 26

Slide 26 text

class ProfilePresenter(val db: Db) { fun transform(events: Flow) : Flow { return combine( db.users().onStart { emit(null) }, db.balances().onStart { emit(0L) }, ) { user, balance -> } } } Can get complex if we add more streams

Slide 27

Slide 27 text

Molecule @Composable fun MoleculePresenter( ... ): Model Compose Runtime State Flow 
 
 Flow

Slide 28

Slide 28 text

@Composable fun ProfilePresenter( userFlow: Flow, balanceFlow: Flow, ): ProfileModel { val user by userFlow.collectAsState(null) val balance by balanceFlow.collectAsState(0L) return if (user == null) { Loading } else { Data(user.name, balance) } }

Slide 29

Slide 29 text

@Composable fun ProfilePresenter( userFlow: Flow, balanceFlow: Flow, ): ProfileModel { val user by userFlow.collectAsState(null) val balance by balanceFlow.collectAsState(0L) return if (user == null) { Loading } else { Data(user.name, balance) } }

Slide 30

Slide 30 text

@Composable fun ProfilePresenter( userFlow: Flow, balanceFlow: Flow, ): ProfileModel { val user by userFlow.collectAsState(null) val balance by balanceFlow.collectAsState(0L) return if (user == null) { Loading } else { Data(user.name, balance) } }

Slide 31

Slide 31 text

val scope = CoroutineScope(Main)

Slide 32

Slide 32 text

val scope = CoroutineScope(Main) scope.launchMolecule( 
 clock = RecompositionClock.ContextClock 
 ) { ProfilePresenter(events, randomService) }

Slide 33

Slide 33 text

val scope = CoroutineScope(Main) val models: StateFlow = scope.launchMolecule( 
 clock = RecompositionClock.ContextClock 
 ) { ProfilePresenter(events, randomService) }

Slide 34

Slide 34 text

val scope = CoroutineScope(Main) val models: StateFlow = scope.launchMolecule( 
 clock = RecompositionClock.ContextClock 
 ) { ProfilePresenter(events, randomService) }

Slide 35

Slide 35 text

val scope = CoroutineScope(Main) val models: StateFlow = scope.launchMolecule( 
 clock = RecompositionClock.ContextClock 
 ) { ProfilePresenter(events, randomService) }

Slide 36

Slide 36 text

val scope = CoroutineScope(Main) 
 scope.launchMolecule( 
 clock = RecompositionClock.ContextClock, 
 emitter = { value -> } 
 ) { ProfilePresenter(events, randomService) }

Slide 37

Slide 37 text

val scope = CoroutineScope(Main) 
 scope.launchMolecule( 
 clock = RecompositionClock.ContextClock, 
 emitter = { value -> } 
 ) { ProfilePresenter(events, randomService) } Will not respect back-pressure

Slide 38

Slide 38 text

val models: Flow = moleculeFlow( 
 clock = RecompositionClock.ContextClock 
 ) { ProfilePresenter(events, randomService) }

Slide 39

Slide 39 text

val scope = CoroutineScope(Main) 
 val models: StateFlow = scope.launchMolecule( 
 clock = RecompositionClock.ContextClock 
 ) { ProfilePresenter(events, randomService) } Frame Clock

Slide 40

Slide 40 text

Composable Recomposition Enter the composition Leave the composition

Slide 41

Slide 41 text

Composable Wait for next frame Enter the composition Leave the composition

Slide 42

Slide 42 text

Composable Wait for next frame Enter the composition Leave the composition Monotonic Frame Clock

Slide 43

Slide 43 text

Monotonic 
 Frame Clock Pull Based System Pull Signal

Slide 44

Slide 44 text

Monotonic 
 Frame Clock Pull Based System Pull Signal Choreographer Performs Pull for UI

Slide 45

Slide 45 text

val scope = CoroutineScope(Main) 
 
 fun CoroutineScope.launchMolecule( ... ) { with(this + clockContext) { 
 // Pass context element to Recomposer } }

Slide 46

Slide 46 text

interface MonotonicFrameClock : CoroutineContext.Element { suspend fun withFrameNanos(onFrame): R override val key: CoroutineContext.Key <*> get() = Key companion object Key : CoroutineContext.Key }

Slide 47

Slide 47 text

Recomposition Clocks ● Context clock ● Immediate

Slide 48

Slide 48 text

Context Clock ● Use MonotonicFrameClock from calling Coroutine 
 
 Context ● Use Molecule with built in Android Frame Clock

Slide 49

Slide 49 text

fun CoroutineScope.launchMolecule( ... ) { val clockContext = when (clock) { RecompositionClock.ContextClock -> EmptyCoroutineContext RecompositionClock.Immediate -> GatedFrameClock(this) } ... }

Slide 50

Slide 50 text

fun CoroutineScope.launchMolecule( ... ) { val clockContext = when (clock) { RecompositionClock.ContextClock -> EmptyCoroutineContext RecompositionClock.Immediate -> GatedFrameClock(this) } ... }

Slide 51

Slide 51 text

val dispatcher = TestCoroutineDispatcher() val clock = BroadcastFrameClock() 
 Frame clock provided by Compose

Slide 52

Slide 52 text

val dispatcher = TestCoroutineDispatcher() val clock = BroadcastFrameClock() 
 val scope = CoroutineScope(dispatcher + clock)

Slide 53

Slide 53 text

var value = 0 
 scope.launchMolecule(RecompositionClock.ContextClock, { value = it }) { var count by remember { mutableStateOf(0) } LaunchedEffect(Unit) { while (true) { delay(100) count ++ } } count }

Slide 54

Slide 54 text

scope.launchMolecule( ... ) { var count by remember { mutableStateOf(0) } LaunchedEffect(Unit) { while (true) { delay(100) count ++ } } count }

Slide 55

Slide 55 text

scope.launchMolecule( ... ) { var count by remember { mutableStateOf(0) } LaunchedEffect(Unit) { while (true) { delay(100) count ++ } } count }

Slide 56

Slide 56 text

dispatcher.advanceTimeBy(100) assertEquals(1, value)

Slide 57

Slide 57 text

scope.launchMolecule(RecompositionClock.ContextClock) { var count by remember { mutableStateOf(0) } LaunchedEffect(Unit) { while (true) { delay(100) count ++ } } count }

Slide 58

Slide 58 text

scope.launchMolecule(RecompositionClock.ContextClock) { var count by remember { mutableStateOf(0) } LaunchedEffect(Unit) { while (true) { delay(100) count ++ } } count }

Slide 59

Slide 59 text

assertEquals(0, value) Initial Composition

Slide 60

Slide 60 text

assertEquals(0, value) 
 dispatcher.advanceTimeBy(100) 
 


Slide 61

Slide 61 text

scope.launchMolecule(RecompositionClock.ContextClock) { var count by remember { mutableStateOf(0) } LaunchedEffect(Unit) { while (true) { delay(100) count ++ } } count }

Slide 62

Slide 62 text

assertEquals(0, value) 
 dispatcher.advanceTimeBy(100) 
 
 assertEquals(1, value)

Slide 63

Slide 63 text

val dispatcher = TestCoroutineDispatcher() val clock = BroadcastFrameClock() 
 val scope = CoroutineScope(dispatcher + clock)

Slide 64

Slide 64 text

assertEquals(0, value) 
 dispatcher.advanceTimeBy(100) 
 
 clock.sendFrame(0) 
 
 assertEquals(1, value)

Slide 65

Slide 65 text

Context Clock ● Use MonotonicFrameClock from calling Coroutine 
 
 Context ● Use Molecule with built in Android Frame Clock

Slide 66

Slide 66 text

Recomposition Clocks ● Context clock ● Immediate

Slide 67

Slide 67 text

Gated Frame Clock ● Request for a frame immediately succeeds ● Can be stopped

Slide 68

Slide 68 text

Immediate class GatedFrameClock(scope: CoroutineScope) : MonotonicFrameClock { 
 val frameSends = Channel(CONFLATED) init { scope.launch { for (send in frameSends) sendFrame() } } 
 ... }

Slide 69

Slide 69 text

Immediate class GatedFrameClock(scope: CoroutineScope) : MonotonicFrameClock { 
 val clock = BroadcastFrameClock { if (isRunning) frameSends.trySend(Unit).getOrThrow() } 
 ... }

Slide 70

Slide 70 text

Recomposition Clocks ● Context clock ● Immediate

Slide 71

Slide 71 text

val scope = CoroutineScope(Main) 
 val models: StateFlow = scope.launchMolecule( 
 clock = RecompositionClock.ContextClock 
 ) { ProfilePresenter(events, randomService) }

Slide 72

Slide 72 text

Launching Molecules ● Create coroutine scope ● Specify frame clock ● Provide Composable function

Slide 73

Slide 73 text

Design Patterns

Slide 74

Slide 74 text

View

Slide 75

Slide 75 text

View Presenter Events

Slide 76

Slide 76 text

View Presenter Events Model

Slide 77

Slide 77 text

View Presenter Events Model Remote Service Result

Slide 78

Slide 78 text

interface MoleculePresenter { @Composable fun models(events: Flow): Model }

Slide 79

Slide 79 text

class ProfilePresenter: MoleculePresenter { @Composable override fun models(events: Flow): ProfileModel { } }

Slide 80

Slide 80 text

class ProfilePresenter(val repo: Repo): MoleculePresenter< ... > { @Composable override fun models(events: Flow): ProfileModel { } }

Slide 81

Slide 81 text

@Composable fun models(events: Flow): ProfileModel { var data by remember { mutableStateOf(null) } LaunchedEffect(Unit) { data = repo.getProfileData() } }

Slide 82

Slide 82 text

@Composable fun models(events: Flow): ProfileModel { 
 ... return if (data == null) { ProfileModel.Loading } else { ProfileModel.Success(data) } }

Slide 83

Slide 83 text

val models = scope.launchMolecule( ... ) { presenter.models(events) } Events Flow

Slide 84

Slide 84 text

sealed interface ProfileEvents { object Edit: ProfileEvents }

Slide 85

Slide 85 text

Channel Event Presenter

Slide 86

Slide 86 text

@Composable fun models(events: Flow): ProfileModel { LaunchedEffect(events) { events.collect { when (it) { Events.Edit -> { ... } } } } }

Slide 87

Slide 87 text

@Composable fun models(events: Flow): ProfileModel { CollectEffect(events) { when (it) { Events.ClickedSubmit -> { ... } } } }

Slide 88

Slide 88 text

View Presenter Events Model Remote Service Result

Slide 89

Slide 89 text

Molecule Presenter ● Separation of concerns ● Composite presenters

Slide 90

Slide 90 text

Component 1 Component 2 Component 3

Slide 91

Slide 91 text

class ProfilePresenter: MoleculePresenter { @Composable override fun models(events: Flow): ProfileModel { } } Can get complex

Slide 92

Slide 92 text

class Component1Presenter: MoleculePresenter { @Composable override fun models(events: Flow): Model { } }

Slide 93

Slide 93 text

class ProfilePresenter( 
 val component1Presenter: Component1Presenter, 
 ...
 ): MoleculePresenter { @Composable override fun models(events: Flow): ProfileModel { } }

Slide 94

Slide 94 text

class ProfilePresenter( ... ): MoleculePresenter { @Composable override fun models(events: Flow): ProfileModel { val model = component1Presenter.models(events) } }

Slide 95

Slide 95 text

View Presenter Events Model Remote Service Result

Slide 96

Slide 96 text

Testing

Slide 97

Slide 97 text

val models: StateFlow = scope.launchMolecule( 
 clock = RecompositionClock.ContextClock 
 ) { ProfilePresenter(randomService) } Testing

Slide 98

Slide 98 text

Testing ● Turbine ● Molecule Testing Dependency [Deprecated]

Slide 99

Slide 99 text

Turbine ● Queue based testing ● Use to be an extension in SQL Delight

Slide 100

Slide 100 text

No content

Slide 101

Slide 101 text

Turbine interface ReceiveTurbine { fun awaitEvent(): Event fun awaitError(): Throwable suspend fun awaitItem(): T ... }

Slide 102

Slide 102 text

Turbine flow { emit("one") emit("two") }.test { 
 assertEquals("one", awaitItem()) 
 assertEquals("two", awaitItem()) }

Slide 103

Slide 103 text

Turbine flow { emit("one") emit("two") }.test { 
 assertEquals("one", awaitItem()) 
 assertEquals("two", awaitItem()) }

Slide 104

Slide 104 text

Turbine suspend fun Flow.test( validate: suspend ReceiveTurbine.() -> Unit, ) { coroutineScope { collectTurbineIn(this).apply { } } }

Slide 105

Slide 105 text

Turbine fun Flow.collectTurbineIn(scope: CoroutineScope): Turbine { 
 lateinit var channel: Channel val job = scope.launch(start = UNDISPATCHED) { channel = collectIntoChannel(this) } return ChannelTurbine(channel, job) }

Slide 106

Slide 106 text

Turbine fun Flow.collectTurbineIn(scope: CoroutineScope): Turbine { 
 lateinit var channel: Channel val job = scope.launch(start = UNDISPATCHED) { channel = collectIntoChannel(this) } return ChannelTurbine(channel, job) }

Slide 107

Slide 107 text

Turbine fun Flow.collectTurbineIn(scope: CoroutineScope): Turbine { 
 lateinit var channel: Channel val job = scope.launch(start = UNDISPATCHED) { channel = collectIntoChannel(this) } return ChannelTurbine(channel, job) }

Slide 108

Slide 108 text

Turbine class ChannelTurbine( channel: Channel = Channel(UNLIMITED) ) : Turbine { suspend fun awaitItem(): T = channel.awaitItem() }

Slide 109

Slide 109 text

Turbine val channel = Turbine() listOf(1, 2, 3).forEach { channel.add(it) } channel.skipItems(2) assertEquals(3, channel.awaitItem())

Slide 110

Slide 110 text

val channel = Turbine() listOf(1, 2, 3).forEach { channel.add(it) } channel.skipItems(2) assertEquals(3, channel.awaitItem()) Turbine

Slide 111

Slide 111 text

Turbine val channel = Turbine() listOf(1, 2, 3).forEach { channel.add(it) } channel.skipItems(2) assertEquals(3, channel.awaitItem())

Slide 112

Slide 112 text

val models: StateFlow = scope.launchMolecule( 
 clock = RecompositionClock.ContextClock 
 ) { profilePresenter.models(events) } Testing

Slide 113

Slide 113 text

Testing Cases ● Verify correct models are created ● Verify side effects from events

Slide 114

Slide 114 text

Testing ● runBlocking ● Immediate Frame Clock ● Use Turbine

Slide 115

Slide 115 text

Molecule Testing @Test fun `should get success model`() = runBlocking { launchMolecule(RecompositionClock.Immediate) { profilePresenter.models(events) }.test { } }

Slide 116

Slide 116 text

Molecule Testing @Test fun `should get success model`() = runBlocking { launchMolecule(RecompositionClock.Immediate) { profilePresenter.models(events) }.test { assertEquals(ProfileModel.Loading, awaitItem()) 
 ... } }

Slide 117

Slide 117 text

Molecule Testing @Test fun `should get success model`() = runBlocking { 
 val events = MutableSharedFlow() 
 launchMolecule(RecompositionClock.Immediate) { profilePresenter.models(events) }.test { } }

Slide 118

Slide 118 text

Molecule Testing @Test fun `should get success model`() = runBlocking { launchMolecule(RecompositionClock.Immediate) { profilePresenter.models(events) }.test { 
 events.emit(EditProfile) } }

Slide 119

Slide 119 text

Molecule Testing @Test fun `should get success model`() = runBlocking { launchMolecule(RecompositionClock.Immediate) { profilePresenter.models(events) }.test { 
 events.emit(EditProfile) 
 // Assertions } }

Slide 120

Slide 120 text

Testing ● runBlocking ● Immediate Frame Clock ● Use Turbine

Slide 121

Slide 121 text

Molecule Internals

Slide 122

Slide 122 text

val scope = CoroutineScope(Main) 
 
 fun CoroutineScope.launchMolecule( ... ) { // Setup Recomposer }

Slide 123

Slide 123 text

Internals ● Compose Compiler & Runtime ● How Molecule hooks into Compose Runtime

Slide 124

Slide 124 text

Compose Components ● Composition ● Recomposer ● Applier

Slide 125

Slide 125 text

Compose Internals class Foo { fun bar() { 
 ...
 } } Code Parsing Analysis 
 & 
 Resolve IR

Slide 126

Slide 126 text

@Composable fun Greeting(name: String) { Text(name) } Compose Internals

Slide 127

Slide 127 text

@Composable fun Greeting(name: String) { Text(name) } Creates Deferred Change Compose Internals

Slide 128

Slide 128 text

@Composable fun Greeting(name: String, $composer: Composer <*> ) { Text(name) } Connects to Compose Runtime Compose Internals

Slide 129

Slide 129 text

@Composable fun Greeting(name: String, $composer: Composer <*> ) { Text(name, $composer) } Calling context is passed along Compose Internals

Slide 130

Slide 130 text

suspend fun getData(payload: Payload) { ... } Compose Internals

Slide 131

Slide 131 text

suspend fun getData(payload: Payload, $cont: Continuation) { anotherMethod($cont) } Compose Internals

Slide 132

Slide 132 text

@Composable fun Greeting(name: String) { Text(name) } Creates Deferred Change Composition

Slide 133

Slide 133 text

@Composable inline fun Layout( ... ) { 
 ReusableComposeNode> ( update = { set(measurePolicy, ComposeUiNode.SetMeasurePolicy) set(density, ComposeUiNode.SetDensity) ... }, ) } Composition Teaching the runtime

Slide 134

Slide 134 text

@Composable inline fun ResuableComposeNode( ... ) { 
 ... currentComposer.startReusableNode() 
 ...
 currentComposer.createNode(factory) } Composition Delegate to composer

Slide 135

Slide 135 text

Composition @Composable inline fun remember( ... ) { 
 ... currentComposer.cache( ... ) 
 }

Slide 136

Slide 136 text

@Composable inline fun ResuableComposeNode( ... ) { 
 ... currentComposer.startReusableNode() 
 ...
 currentComposer.createNode(factory) } Composition Changes List Change(…) Change(…) Change(…)

Slide 137

Slide 137 text

Composition internal typealias Change = ( applier: Applier <*> , slots: SlotWriter, rememberManager: RememberManager ) -> Unit

Slide 138

Slide 138 text

Composition Changes List Change(…) Change(…) Change(…) Slot table Applier

Slide 139

Slide 139 text

Composition class UiApplier(…): AbstractApplier { 
 fun insertBottomUp( ... ) fun insertTopDown( ... ) fun move( ... ) fun onClear( ... ) fun onEndChanges( ... ) 
 fun remove( ... ) } Applier in Compose UI

Slide 140

Slide 140 text

Entry Points for Client Libraries ● Create a recomposer ● Specify Applier ● Call setContent with composable function

Slide 141

Slide 141 text

Recomposer ● Trigger recompositions ● Determine which thread to compose or recompose on

Slide 142

Slide 142 text

val contextWithClock = currentThreadContext + 
 (pausableClock ?: EmptyCoroutineContext) 
 
 val recomposer = Recomposer(contextWithClock) 
 Compose UI Example

Slide 143

Slide 143 text

fun launchMolecule(clock: RecompositionClock, body: @Composable () -> T) { with(this + clockContext) { val recomposer = Recomposer(coroutineContext) val composition = Composition(UnitApplier, recomposer) launch(start = UNDISPATCHED) { recomposer.runRecomposeAndApplyChanges() } } } Molecule Internals

Slide 144

Slide 144 text

fun launchMolecule( ... ) { with(this + clockContext) { val recomposer = Recomposer(coroutineContext) val composition = Composition(UnitApplier, recomposer) launch(start = UNDISPATCHED) { recomposer.runRecomposeAndApplyChanges() } } } Molecule Internals

Slide 145

Slide 145 text

Recomposer ● Creates coroutine Job ● Applies changes for recomposition using context ● Cancels composition or recompositions when shutdown

Slide 146

Slide 146 text

fun launchMolecule( ... ) { with(this + clockContext) { val recomposer = Recomposer(coroutineContext) val composition = Composition(UnitApplier, recomposer) launch(start = UNDISPATCHED) { recomposer.runRecomposeAndApplyChanges() } } } Molecule Internals

Slide 147

Slide 147 text

fun launchMolecule(@Composable body: () -> T) { with(this + clockContext) { 
 ... composition.setContent { body() } } } Molecule Internals

Slide 148

Slide 148 text

fun launchMolecule(emitter: (value: T) -> Unit) { with(this + clockContext) { 
 ... composition.setContent { emitter(body()) } } } Molecule Internals

Slide 149

Slide 149 text

Molecule Internals var flow: MutableStateFlow? = null launchMolecule( emitter = { value -> outputFlow.value = value }, ... )

Slide 150

Slide 150 text

val models: StateFlow = scope.launchMolecule(…) { profilePresenter.models(events) } models.collect { ... }

Slide 151

Slide 151 text

Building State Flows with Compose ● How to setup and use Molecule ● Design Patterns ● Testing with Molecule ● Molecule Internals

Slide 152

Slide 152 text

Thank You! www.codingwithmohit.com @heyitsmohit