Slide 1

Slide 1 text

Deep Learning Melanie Warrick Skymind @nyghtowl

Slide 2

Slide 2 text

@nyghtowl Artificial Neural Nets Input Output Hidden Run until error stops improving = converge Loss Function

Slide 3

Slide 3 text

@nyghtowl Deep Learning...

Slide 4

Slide 4 text

@nyghtowl What Makes it Deep? Layers Feature Engineering

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

@nyghtowl Why DL Matters? - Feature Engineering - Language & Image Analysis - Unsupervised Modeling

Slide 7

Slide 7 text

@nyghtowl Neural Nets...

Slide 8

Slide 8 text

@nyghtowl Feed Forward Neural Net Who is it? Pixels Edges Object Parts Object Models Layer 2 Layer 3 Layer 4 Input

Slide 9

Slide 9 text

@nyghtowl Convolutional Neural Net

Slide 10

Slide 10 text

@nyghtowl Recurrent Neural Net

Slide 11

Slide 11 text

@nyghtowl Restricted Boltzmann Machine

Slide 12

Slide 12 text

@nyghtowl Multiple Models

Slide 13

Slide 13 text

@nyghtowl Real World Value...

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

DUKE VINCENTIO: Well, your wit is in the care of side and that. Second Lord: They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars. Clown: Come, sir, I will make did behold your worship. VIOLA: I'll drink it.

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

@nyghtowl

Slide 18

Slide 18 text

@nyghtowl

Slide 19

Slide 19 text

@nyghtowl

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

@nyghtowl Last Points - deep neural nets - automation & personalization - unsupervised

Slide 22

Slide 22 text

@nyghtowl ● http://www.seattlepi.com/science/article/NASA-photos-as-hallucinated-by-Google-s-Deep-Dream-6654010.php#photo- 9009852 ● http://www.wired.com/wp-content/uploads/2015/06/siri-ft.jpg ● http://www.google.com/selfdrivingcar/images/home-where.jpg ● http://i.telegraph.co.uk/multimedia/archive/02122/WILLIAM-SHAKESPEAR_2122089b.jpg ● https://karpathy.github.io/2015/05/21/rnn-effectiveness/ ● http://static.artdiscover.com/img/news/340_2_l.jpeg ● http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/ ● http://deeplearning.net/tutorial/lenet.html ● http://web.media.mit.edu/~lieber/Teaching/Context/ ● http://arxiv.org/pdf/1412.7755.pdf ● https://www.kaggle.com/forums/f/15/kaggle-forum/t/10878/feature-representation-in-deep-learning ● http://jaoying-google.blogspot.com/2012_12_01_archive.html ● http://users.clas.ufl.edu/glue/longman/1/einstein.html ● https://pbs.twimg.com/media/CJm9HmfVEAEXU0c.jpg:large ● http://i.telegraph.co.uk/multimedia/archive/03370/broadway2_3370419k.jpg ● https://qiita-image-store.s3.amazonaws.com/0/60969/41c3fa0d-418a-eafe-65cb-2fba2c74dd12.png References: Images

Slide 23

Slide 23 text

@nyghtowl Deep Learning Melanie Warrick skymind.io (company) @nyghtowl

Slide 24

Slide 24 text

@nyghtowl Special Thanks ● Adam Gibson ● Alex Black ● Bryan Catanzaro ● Charlie Tang ● Chris Nicholson ● Christian Fernandez ● Cyprien Noel ● Diogo Almeida ● Erin O’Connell ● Isabel Markl ● Jason Morrison ● Jeremy Dunck ● Josh Patterson ● Kelley Robinson ● Lindsay Cade ● Marissa Marquez ● Mark Ettinger ● Megan Speir ● Meggie Mahnken ● Paco Nathan ● Phillip Culliton ● Tarin Ziyaee ● Tim Elser ● Tiia Priilaid

Slide 25

Slide 25 text

● Nature of Code: Neural Networks http://natureofcode.com/book/chapter-10-neural-networks/ ● Neural Nets and Deep Learning http://neuralnetworksanddeeplearning.com/ ● Neural Nets Demystified (Welch) http://www.welchlabs.com/blog/ ● Theano Tutorial http://deeplearning.net/software/theano/tutorial/index.html#tutorial ● “The State of Deep Learning in 2014” https://speakerdeck.com/ogrisel/the-state-of-deep- learning-in-2014 ● “Hacker’s Guide to Neural Nets” https://karpathy.github.io/neuralnets/ ● “Automated Image Capturing with ConvNets and Recurrent Nets” (Karpathy) http://cs.stanford. edu/people/karpathy/sfmltalk.pdf ● Deeplearning.net ● Wikipedia.org Where to go next... @nyghtowl