Slide 1

Slide 1 text

Mining Reaction and Diffusion Dynamics in Social Activities Taichi Murayama, Yasuko Matsubara, Yasushi Sakurai SANKEN, Osaka University CIKM 2022

Slide 2

Slide 2 text

2 Online User Activity on the Web as Sensor Background Social sensor Physics World Post / Search Recommendation Feedback

Slide 3

Slide 3 text

3 Example: Google Flu Background A system that predicts the number of influenza cases based on the volume of search queries based on linear regression

Slide 4

Slide 4 text

4 Search queries capture human interests Motivation U.S. Japan Italy Facebook Twitter Instagram Facebook Twitter Instagram What’s relations between items? What’s interactions between countries? ?

Slide 5

Slide 5 text

5 Problem Formulation (JWFOPOMJOFVTFSBDUJWJUJFT e.g., google search volumes

Slide 6

Slide 6 text

6 Problem Formulation (PBM%JGGVTJPOGMPX PGFBDIHSPVQ e.g., google search volumes taylor swift lady gaga beyonce katy perry maroon 5 stevie wonder Group A: Russia, Mexico, Spain, Vietnam, etc. Group B: United Kingdom, Germany, France, etc. Group C: United States, Canada, Australia, etc. Group D: Iran, Pakistan, Brazil, Argentina, etc. Group E: China, Japan, Vietnam, South Africa, etc.

Slide 7

Slide 7 text

7 Problem Formulation (PBM*OUFSBDUJPOCFUXFFOLFZXPSET e.g., google search volumes United States lady gaga maroon 5 stevie wonder beyonce katy perry taylor swift Japan lady gaga maroon 5 stevie wonder beyonce katy perry taylor swift

Slide 8

Slide 8 text

8 Problem Formulation (PBM4FBTPOBMJUZ e.g., google search volumes

Slide 9

Slide 9 text

9 Problem Formulation (PBM(PPEGPSFDBTUJOHQFSGPSNBODF e.g., google search volumes 2012 2014 2016 2018 Time Keywords Countries Russia Mexico Colombia Modeling Forecasting beyonce katy perry stevie wonder taylor swift lady gaga maroon 5

Slide 10

Slide 10 text

10 Problem Formulation: Summary Givenonline user activities Goal 1Diffusion process of each group Goal 2Interaction between keywords Goal 3Seasonality Goal 4Good forecasting performance

Slide 11

Slide 11 text

11 Problem Formulation: Summary Givenonline user activities Goal 1Diffusion process of each group Goal 2Interaction between keywords Goal 3Seasonality Goal 4Good forecasting performance Our solution: FLUXCUBE Reaction-diffusion system + Neural Network

Slide 12

Slide 12 text

12 Application of Reaction-Diffusion System Our model: FLUXCUBE πœ•π’– πœ•π‘‘ = 𝒇 𝒖, 𝑑 + π’ŸΞ”π‘’ Main Equation Reaction term Diffusion term Reaction-Diffusion System is utilized is a mathematical model corresponding for physical phenomena.

Slide 13

Slide 13 text

13 Application of Reaction-Diffusion System Our model: FLUXCUBE πœ•π’– πœ•π‘‘ = 𝒇 𝒖, 𝑑 + π’ŸΞ”π‘’ Main Equation Reaction term Diffusion term Amazon BestBuy ebay Target Competitive relationship Mutualistic relationship Macy’s Washington State Amazon Target ebay Craigslist Seasonal term Black Friday + Γ—

Slide 14

Slide 14 text

14 Our model: FLUXCUBE Input: 𝝌 = π’™π’•π’Šπ’‹ timestep t, location i, item j πœ•π’– πœ•π‘‘ = 𝒇 𝒖, 𝑑 + π’ŸΞ”π‘’ Reaction-Diffusion FLUXCUBE πœ•π‘₯$%& πœ•π‘‘ = 𝒇 π‘₯$%& |πŒπ’•,π’Š,: + β„Š π‘₯$%& |πŒπ’• , 𝒕 π‘₯$)*%& = 𝐹 πœ•π‘₯$%& πœ•π‘‘ + π‘₯$%& Reaction term Diffusion term

Slide 15

Slide 15 text

15 Our model: FLUXCUBE πœ•π’– πœ•π‘‘ = 𝒇 𝒖, 𝑑 + π’ŸΞ”π‘’ Reaction-Diffusion FLUXCUBE πœ•π‘₯$%& πœ•π‘‘ = 𝒇 π‘₯$%& |πŒπ’•,π’Š,: + β„Š π‘₯$%& |πŒπ’• , 𝒕 π‘₯$)*%& = 𝐹 πœ•π‘₯$%& πœ•π‘‘ + π‘₯$%& Seasonal term Reaction term Amazon BestBuy ebay Target Competitive relationship Mutualistic relationship Macy’s

Slide 16

Slide 16 text

16 Reaction term: component idea Component idea: Item interaction as Jungle Reaction term: FLUXCUBE Spider monkeys Capybaras Squirrel monkeys Macaws Fruits Nuts Grass Facebook Twitter Youtube Reddit Kids Teens Adults Analogy

Slide 17

Slide 17 text

17 Reaction term: component idea The idea represents as Lotka-Volterra Equation Reaction term: FLUXCUBE Facebook Twitter Youtube Reddit Kids Teens Adults π‘Ž& πŒπ’•,π’Š,𝒋 1 βˆ’ βˆ‘&+ 𝑐&&+ π‘₯$%&+ 𝑏&

Slide 18

Slide 18 text

18 Reaction term: component idea The idea represents as Lotka-Volterra Equation Reaction term: FLUXCUBE Facebook Twitter Youtube Reddit Kids Teens Adults π‘Ž& πŒπ’•,π’Š,𝒋 1 βˆ’ βˆ‘&+ 𝑐&&+ π‘₯$%&+ 𝑏& The variable 𝒄𝒋𝒋" represents the kinds of interaction between item j and item j’

Slide 19

Slide 19 text

19 Reaction term: component idea The idea represents as Lotka-Volterra Equation Reaction term: FLUXCUBE Facebook Twitter Youtube Reddit Kids Teens Adults π‘Ž& πŒπ’•,π’Š,𝒋 1 βˆ’ βˆ‘&+ 𝑐&&+ π‘₯$%&+ 𝑏& The variable 𝒄𝒋𝒋" represents the kinds of interaction between item j and item j’

Slide 20

Slide 20 text

20 Reaction term: component idea The idea represents as Lotka-Volterra Equation Reaction term: FLUXCUBE Facebook Twitter Youtube Reddit Kids Teens Adults π‘Ž& πŒπ’•,π’Š,𝒋 1 βˆ’ βˆ‘&+ 𝑐&&+ π‘₯$%&+ 𝑏& The variable 𝒄𝒋𝒋" represents the kinds of interaction between item j and item j’

Slide 21

Slide 21 text

21 Reaction term: component idea The idea represents as Lotka-Volterra Equation Reaction term: FLUXCUBE Facebook Twitter Youtube Reddit Kids Teens Adults π‘Ž& πŒπ’•,π’Š,𝒋 1 βˆ’ βˆ‘&+ 𝑐&&+ π‘₯$%&+ 𝑏& The variable 𝒄𝒋𝒋" represents the kinds of interaction between item j and item j’

Slide 22

Slide 22 text

22 Reaction term: component idea The idea represents as Lotka-Volterra Equation Reaction term: FLUXCUBE 𝒇 π‘₯$%& |πŒπ’•,π’Š,: = π‘Ž& πŒπ’•,π’Š,𝒋 1 βˆ’ βˆ‘&+ 𝑐&&+ π‘₯$%&+ 𝑏& πœ•π‘₯$%& πœ•π‘‘ = 𝒇 π‘₯$%& |πŒπ’•,π’Š,: + β„Š π‘₯$%& |πŒπ’• , 𝒕 FLUXCUBE:

Slide 23

Slide 23 text

23 Diffusion term: FLUXCUBE πœ•π’– πœ•π‘‘ = 𝒇 𝒖, 𝑑 + π’ŸΞ”π‘’ Reaction-Diffusion FLUXCUBE πœ•π‘₯$%& πœ•π‘‘ = 𝒇 π‘₯$%& |πŒπ’•,π’Š,: + β„Š π‘₯$%& |πŒπ’• , 𝒕 π‘₯$)*%& = 𝐹 πœ•π‘₯$%& πœ•π‘‘ + π‘₯$%& Seasonal term Diffusion term Washington State Amazon Target ebay Craigslist

Slide 24

Slide 24 text

24 Reaction term: component idea l The interactions of any keyword between locations are not constant because of external factors l We need to capture the time change of the interaction, e.g., complex phenomena and rapid changes. Diffusion term: FLUXCUBE Washington State Amazon Target ebay Craigslist

Slide 25

Slide 25 text

25 Reaction term: component idea l The interactions of any keyword between locations are not constant because of external factors l We need to capture the time change of the interaction, e.g., complex phenomena and rapid changes. Diffusion term: FLUXCUBE Washington State Amazon Target ebay Craigslist Our model represents the interaction by RNN

Slide 26

Slide 26 text

26 Our model represents the interaction between locations by Recurrent Neural Network By applying a neural network to apart of our mathematical model, we expect to achieve both flexible modeling and high explainability. Diffusion term: FLUXCUBE β„Š π‘₯$%& |πŒπ’• , 𝒕 = 8 𝑅𝑁𝑁(1: 𝑑) βŠ™ πŒπ’• πœ•π‘₯$%& πœ•π‘‘ = 𝒇 π‘₯$%& |πŒπ’•,π’Š,: + β„Š π‘₯$%& |πŒπ’• , 𝒕 FLUXCUBE:

Slide 27

Slide 27 text

27 The output value of RNN represents the contribution of the popularity of each keyword between locations. Diffusion term: FLUXCUBE β„Š π‘₯$%& |πŒπ’• , 𝒕 = 8 𝑅𝑁𝑁(1: 𝑑) βŠ™ πŒπ’• 𝑹𝑡𝑡(𝟏: 𝒕) Time The contribution of the popularity from Canada to France

Slide 28

Slide 28 text

28 Seasonality term: FLUXCUBE πœ•π’– πœ•π‘‘ = 𝒇 𝒖, 𝑑 + π’ŸΞ”π‘’ Reaction-Diffusion FLUXCUBE πœ•π‘₯$%& πœ•π‘‘ = 𝒇 π‘₯$%& |πŒπ’•,π’Š,: + β„Š π‘₯$%& |πŒπ’• , 𝒕 π‘₯$)*%& = 𝐹 πœ•π‘₯$%& πœ•π‘‘ + π‘₯$%& Seasonlaity term Washington State Amazon Target ebay Craigslist

Slide 29

Slide 29 text

29 Online users change their behavior according to seasonal events, such as Christmas and Black Friday. Finding hidden seasonality Seasonality term: FLUXCUBE π‘₯$)*%& = 𝐹 ,-!"# ,$ + π‘₯$%& = 1 + 𝑺$ ./0 1 %& βŠ™ ,-!"# ,$ + π‘₯$%& Seasonality Weight e.g., p = 52 weeks Black Friday

Slide 30

Slide 30 text

30 Fitting: FLUXCUBE Input: 𝝌 = π’™π’•π’Šπ’‹ FLUXCUBE πœ•π‘₯$%& πœ•π‘‘ = 𝒇 π‘₯$%& |πŒπ’•,π’Š,: + β„Š π‘₯$%& |πŒπ’• , 𝒕 π‘₯$)*%& = 𝐹 πœ•π‘₯$%& πœ•π‘‘ + π‘₯$%& Reaction term Diffusion term Loss Function πŒπ’„ βˆ’ @ 𝝌 𝟐 + 𝛼 8 𝐷 4 + 𝛽 8 𝑆 4 Regression term Sparse term

Slide 31

Slide 31 text

31 l It is difficult to infer interactions between many areas due to computational costs. Country Grouping

Slide 32

Slide 32 text

32 l It is difficult to infer interactions between many areas due to computational costs. Country Grouping Our solution: Before training, grouping similar areas into same group U.S. Japan Similar interaction Same group

Slide 33

Slide 33 text

33 Country Grouping 𝒇 π‘₯$%& |πŒπ’•,π’Š,: = π‘Ž& πŒπ’•,π’Š,𝒋 1 βˆ’ βˆ‘&+ 𝑐&&+ π‘₯$%&+ 𝑏& πœ•π‘₯$%& πœ•π‘‘ = 𝒇 π‘₯$%& |πŒπ’•,π’Š,: + β„Š π‘₯$%& |πŒπ’• , 𝒕 FLUXCUBE: 𝑔*, … 𝑔5$ =K-means UMAP π’‚π’Š, π’ƒπ’Š, π‘ͺπ’Š , 𝑖 = [1, … , 𝐿] Grouping each areas Parameters in Reaction term of each country Number of countries Reaction term

Slide 34

Slide 34 text

34 Country Grouping 𝒇 π‘₯$%& |πŒπ’•,π’Š,: = π‘Ž& πŒπ’•,π’Š,𝒋 1 βˆ’ βˆ‘&+ 𝑐&&+ π‘₯$%&+ 𝑏& πœ•π‘₯$%& πœ•π‘‘ = 𝒇 π‘₯$%& |πŒπ’•,π’Š,: + β„Š π‘₯$%& |πŒπ’• , 𝒕 FLUXCUBE: 𝑔*, … 𝑔5$ =K-means UMAP π’‚π’Š, π’ƒπ’Š, π‘ͺπ’Š , 𝑖 = [1, … , 𝐿] Grouping each areas Parameters in Reaction term of each country Number of countries Reaction term taylor swift lady gaga beyonce katy perry maroon 5 stevie wonder Group A: Russia, Mexico, Spain, Vietnam, etc. Group B: United Kingdom, Germany, France, etc. Group C: United States, Canada, Australia, etc. Group D: Iran, Pakistan, Brazil, Argentina, etc. Group E: China, Japan, Vietnam, South Africa, etc. We find suitable number of area groups (𝑑!) by Model Description Cost (MDL)

Slide 35

Slide 35 text

35 Experimental Settings l Evaluate the forecasting score in 13, 26, 52 weeks ahead l Evaluation Metrics l RMSE, MAE: Smaller value indicating better performance Dataset l Two types of Google Trend data, which contained weekly web search volumes collected for about 10 years Experiments

Slide 36

Slide 36 text

36 Experimental Performance Experiments

Slide 37

Slide 37 text

37 Experimental Performance Experiments

Slide 38

Slide 38 text

38 Experimental Performance Experiments

Slide 39

Slide 39 text

39 Ablation Study Experiments πœ•π‘₯$%& πœ•π‘‘ = 𝒇 π‘₯$%& |πŒπ’•,π’Š,: + β„Š π‘₯$%& |πŒπ’• , 𝒕 π‘₯$)*%& = 𝐹 πœ•π‘₯$%& πœ•π‘‘ + π‘₯$%& Removal Seasonal Removal: g() Replace g() with constant value Full Model

Slide 40

Slide 40 text

40 Ablation Study Experiments πœ•π‘₯$%& πœ•π‘‘ = 𝒇 π‘₯$%& |πŒπ’•,π’Š,: + β„Š π‘₯$%& |πŒπ’• , 𝒕 π‘₯$)*%& = 𝐹 πœ•π‘₯$%& πœ•π‘‘ + π‘₯$%& Removal Seasonal Removal: g() Replace g() with constant value Full Model β„Š π‘₯*+,|πŒπ’• , 𝒕 = + 𝑅𝑁𝑁(1: 𝑑) βŠ™ πŒπ’• 𝜢 βŠ™ πŒπ’•

Slide 41

Slide 41 text

41 Case study1: Vod Case Study AppleTV / ESPN / HBO / Hulu / Netflix Sling / Vudu / Youtube Keyword List

Slide 42

Slide 42 text

42 Case study1: Vod Case Study Interactions

Slide 43

Slide 43 text

43 Case study1: Vod Case Study Influential flow

Slide 44

Slide 44 text

44 Case study2: Music Case Study Beyonce/KatyPerry/LadyGaga/Maroon5/ StevieWonder/TaylorSwift Keyword List

Slide 45

Slide 45 text

45 Case study2: Music Case Study Interactions

Slide 46

Slide 46 text

46 Case study2: Music Case Study Influential flow

Slide 47

Slide 47 text

47 l FLUXCUBE: an effective modeling and forecasting method based on reaction-diffusion and ecological systems. It can recognize trends, seasonality and interactions in input observations by extracting their latent dynamic systems. l Proposed model achieves higher accuracy in Google Trends Datasets by capturing the latent dynamics . l It provides the latent interactions and the influence flows hidden behind observational data in a human-interpretable form. Conclusion