Slide 1

Slide 1 text

関西大学総合情報学部 浅野 晃 画像情報処理 2024年度秋学期 第1部・画像のサンプリングと周波数 / 第4回 フーリエ変換とサンプリング定理

Slide 2

Slide 2 text

サンプリングとサンプリング定理🤔🤔

Slide 3

Slide 3 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングとサンプリング定理 3 連続関数を 輝度f(x) 位置x f(x) x サンプリング

Slide 4

Slide 4 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングとサンプリング定理 3 連続関数を 離散的に 輝度f(x) 位置x f(x) x サンプリング

Slide 5

Slide 5 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングとサンプリング定理 3 連続関数を 離散的に 輝度f(x) 位置x f(x) x サンプリング サンプリング定理

Slide 6

Slide 6 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングとサンプリング定理 3 連続関数を 離散的に 輝度f(x) 位置x f(x) x サンプリング サンプリング定理 ある程度細かい間隔でサンプリングすれば,もとの連続関数に戻せる

Slide 7

Slide 7 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングとサンプリング定理 3 連続関数を 離散的に 輝度f(x) 位置x f(x) x サンプリング サンプリング定理 ある程度細かい間隔でサンプリングすれば,もとの連続関数に戻せる

Slide 8

Slide 8 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングとサンプリング定理 3 連続関数を 離散的に 輝度f(x) 位置x f(x) x サンプリング サンプリング定理 ある程度細かい間隔でサンプリングすれば,もとの連続関数に戻せる どのくらい細かくなければならないかは, もとの関数に含まれる最高の周波数による

Slide 9

Slide 9 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングとサンプリング定理 3 連続関数を 離散的に 輝度f(x) 位置x f(x) x サンプリング サンプリング定理 ある程度細かい間隔でサンプリングすれば,もとの連続関数に戻せる どのくらい細かくなければならないかは, もとの関数に含まれる最高の周波数による 「細かい」関数は 細かくサンプリング

Slide 10

Slide 10 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリング定理・直観的には 4 サンプリングされた関数 f T (x) x 連続関数に復元

Slide 11

Slide 11 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリング定理・直観的には 4 サンプリングされた関数 f T (x) x f T (x) x 連続関数に復元 これが正解?

Slide 12

Slide 12 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリング定理・直観的には 4 サンプリングされた関数 f T (x) x f T (x) x f T (x) x 連続関数に復元 これが正解? これだって 正解じゃないの?

Slide 13

Slide 13 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリング定理・直観的には 4 サンプリングされた関数 もしこのような細かい動きが正解だとすれば, 細かい動きをとらえるにはサンプリングが粗すぎる,つまり 元の連続関数の最高の周波数に対して十分細かくサンプリングされていない f T (x) x f T (x) x f T (x) x 連続関数に復元 これが正解? これだって 正解じゃないの?

Slide 14

Slide 14 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングとは 5 連続関数を 離散的に 輝度f(x) 位置x f(x) x サンプリング

Slide 15

Slide 15 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングとは 5 連続関数を 離散的に 輝度f(x) 位置x f(x) x サンプリング この1本1本は何?

Slide 16

Slide 16 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングとは 5 連続関数を 離散的に 輝度f(x) 位置x f(x) x サンプリング この1本1本は何? ディラックのデルタ関数 δ(x)

Slide 17

Slide 17 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ディラックのデルタ関数 δ(x) 6 x = 0 の1点以外すべてゼロ δ(x) = 0 (x = 0), ∞ −∞ δ(x)dx = 1 x = 0 をはさんで積分すると1

Slide 18

Slide 18 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ディラックのデルタ関数 δ(x) 6 x = 0 の1点以外すべてゼロ δ(x) = 0 (x = 0), ∞ −∞ δ(x)dx = 1 x = 0 をはさんで積分すると1

Slide 19

Slide 19 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ディラックのデルタ関数 δ(x) 6 x = 0 の1点以外すべてゼロ δ(x) = 0 (x = 0), ∞ −∞ δ(x)dx = 1 x = 0 をはさんで積分すると1

Slide 20

Slide 20 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ディラックのデルタ関数 δ(x) 6 x = 0 の1点以外すべてゼロ δ(x) = 0 (x = 0), ∞ −∞ δ(x)dx = 1 x = 0 をはさんで積分すると1 何ですかこれ??😲😲

Slide 21

Slide 21 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 積分って何でしたっけ 7 この面積を 求めたい Δx → 0 区切りを無限に細かく f(x) x n−1 k=0 f(k∆x)∆x f(x) x 0 Δx 2Δx nΔx 幅が Δx の 長方形で近似 0 a a 0 f(x)dx これが積分 短冊の面積の合計

Slide 22

Slide 22 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 積分って何でしたっけ 7 この面積を 求めたい Δx → 0 区切りを無限に細かく f(x) x n−1 k=0 f(k∆x)∆x f(x) x 0 Δx 2Δx nΔx 幅が Δx の 長方形で近似 0 a a 0 f(x)dx これが積分 短冊の面積の合計 🤔🤔💬💬 しかし,デルタ関数は 1点以外すべてゼロで幅はないから 面積もないはず…

Slide 23

Slide 23 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ディラックのデルタ関数 δ(x) 8 x = 0 の1点以外すべてゼロ δ(x) = 0 (x = 0), ∞ −∞ δ(x)dx = 1 x = 0 をはさんで積分すると1 0 x 幅はなくても面積はあるんです。 だから,こんな「↑」で表さざるを得ない

Slide 24

Slide 24 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ディラックのデルタ関数 δ(x) 8 x = 0 の1点以外すべてゼロ δ(x) = 0 (x = 0), ∞ −∞ δ(x)dx = 1 x = 0 をはさんで積分すると1 0 x 幅はなくても面積はあるんです。 だから,こんな「↑」で表さざるを得ない 高さは,何だともいえない

Slide 25

Slide 25 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 ディラックのデルタ関数 δ(x) 8 x = 0 の1点以外すべてゼロ δ(x) = 0 (x = 0), ∞ −∞ δ(x)dx = 1 x = 0 をはさんで積分すると1 0 x 幅はなくても面積はあるんです。 だから,こんな「↑」で表さざるを得ない 高さは,何だともいえない ∞ −∞ kδ(x)dx = k (「無限」でもない。なぜなら→

Slide 26

Slide 26 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数 combT(x) とサンプリング 9 くし形関数 combT (x) = ∞ n=−∞ δ(x − nT) x ... ... T δ(x) ... δ(x–T) δ(x–nT) デルタ関数を等間隔に並べたもの サンプリング周期 サンプリング周波数 T 1/T

Slide 27

Slide 27 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数 combT(x) とサンプリング 9 くし形関数 サンプリングとは,くし形関数とのかけ算 combT (x) = ∞ n=−∞ δ(x − nT) x ... ... T δ(x) ... δ(x–T) δ(x–nT) fT (x) = f(x)combT (x) デルタ関数を等間隔に並べたもの サンプリング周期 サンプリング周波数 T 1/T

Slide 28

Slide 28 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数 combT(x) とサンプリング 9 くし形関数 サンプリングとは,くし形関数とのかけ算 combT (x) = ∞ n=−∞ δ(x − nT) x ... ... T δ(x) ... δ(x–T) δ(x–nT) fT (x) = f(x)combT (x) 輝度f(x) 位置x デルタ関数を等間隔に並べたもの サンプリング周期 サンプリング周波数 T 1/T

Slide 29

Slide 29 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数 combT(x) とサンプリング 9 くし形関数 サンプリングとは,くし形関数とのかけ算 combT (x) = ∞ n=−∞ δ(x − nT) x ... ... T δ(x) ... δ(x–T) δ(x–nT) fT (x) = f(x)combT (x) 輝度f(x) 位置x x ... ... T δ(x) ... δ(x–T) δ(x–nT) × デルタ関数を等間隔に並べたもの サンプリング周期 サンプリング周波数 T 1/T

Slide 30

Slide 30 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数 combT(x) とサンプリング 9 くし形関数 サンプリングとは,くし形関数とのかけ算 combT (x) = ∞ n=−∞ δ(x − nT) x ... ... T δ(x) ... δ(x–T) δ(x–nT) fT (x) = f(x)combT (x) 輝度f(x) 位置x f T (x) x x ... ... T δ(x) ... δ(x–T) δ(x–nT) × = デルタ関数を等間隔に並べたもの サンプリング周期 サンプリング周波数 T 1/T

Slide 31

Slide 31 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 こんなややこしい関数でなければいけない 10 ディラックのデルタ関数ではなく,「縦棒」を並べて,くし形関数にしてはだめ? x ... ... T ... 1 0 δ(x) = 0 (x = 0) 1 (x = 0)    

Slide 32

Slide 32 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 こんなややこしい関数でなければいけない 10 ディラックのデルタ関数ではなく,「縦棒」を並べて,くし形関数にしてはだめ? だめです🙅🙅 x ... ... T ... 1 0 δ(x) = 0 (x = 0) 1 (x = 0)    

Slide 33

Slide 33 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 こんなややこしい関数でなければいけない 10 ディラックのデルタ関数ではなく,「縦棒」を並べて,くし形関数にしてはだめ? だめです🙅🙅 x ... ... T ... 1 0 δ(x) = 0 (x = 0) 1 (x = 0)     縦棒の関数は,幅がなくて高さ1だから,積分したらゼロ →画像の輝度の合計がゼロのはずはない

Slide 34

Slide 34 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 こんなややこしい関数でなければいけない 10 ディラックのデルタ関数ではなく,「縦棒」を並べて,くし形関数にしてはだめ? だめです🙅🙅 x ... ... T ... 1 0 δ(x) = 0 (x = 0) 1 (x = 0)     縦棒の関数は,幅がなくて高さ1だから,積分したらゼロ →画像の輝度の合計がゼロのはずはない ディラックのデルタ関数は,幅がないのに積分したら1 というヘンな関数(超関数)

Slide 35

Slide 35 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 こんなややこしい関数でなければいけない 10 ディラックのデルタ関数ではなく,「縦棒」を並べて,くし形関数にしてはだめ? だめです🙅🙅 x ... ... T ... 1 0 δ(x) = 0 (x = 0) 1 (x = 0)     縦棒の関数は,幅がなくて高さ1だから,積分したらゼロ →画像の輝度の合計がゼロのはずはない ディラックのデルタ関数は,幅がないのに積分したら1 というヘンな関数(超関数) ※ただ,こういうややこしい話になっているのは,「積分」をもとに考えを進めているからでもあります。   そのあたりは,次回の「離散フーリエ変換」で説明します。

Slide 36

Slide 36 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングされたら,周波数の範囲は? 11 輝度f(x) 位置x f(x) x サンプリング 周波数がある範囲内におさまっているとき サンプリングした後の周波数の範囲は?

Slide 37

Slide 37 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングされたら,周波数の範囲は? 11 輝度f(x) 位置x f(x) x サンプリング サンプリングされた関数である fT(x) のフーリエ変換を求める 周波数がある範囲内におさまっているとき サンプリングした後の周波数の範囲は?

Slide 38

Slide 38 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングされたら,周波数の範囲は? 11 輝度f(x) 位置x f(x) x サンプリング サンプリングされた関数である fT(x) のフーリエ変換を求める 周波数がある範囲内におさまっているとき サンプリングした後の周波数の範囲は? fT (x) = f(x)combT (x)

Slide 39

Slide 39 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングされたら,周波数の範囲は? 11 輝度f(x) 位置x f(x) x サンプリング サンプリングされた関数である fT(x) のフーリエ変換を求める 2つの関数のかけ算のフーリエ変換は? 周波数がある範囲内におさまっているとき サンプリングした後の周波数の範囲は? fT (x) = f(x)combT (x)

Slide 40

Slide 40 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 かけ算のフーリエ変換 12 こうなります FT[f(x)g(x)](ν) = FT[f(x)](ν) ∗ FT[g(x)](ν)

Slide 41

Slide 41 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 かけ算のフーリエ変換 12 こうなります FT[f(x)g(x)](ν) = FT[f(x)](ν) ∗ FT[g(x)](ν) かけ算のフーリエ変換

Slide 42

Slide 42 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 かけ算のフーリエ変換 12 こうなります FT[f(x)g(x)](ν) = FT[f(x)](ν) ∗ FT[g(x)](ν) かけ算のフーリエ変換 フーリエ変換と

Slide 43

Slide 43 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 かけ算のフーリエ変換 12 こうなります FT[f(x)g(x)](ν) = FT[f(x)](ν) ∗ FT[g(x)](ν) かけ算のフーリエ変換 フーリエ変換と フーリエ変換の

Slide 44

Slide 44 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 かけ算のフーリエ変換 12 こうなります FT[f(x)g(x)](ν) = FT[f(x)](ν) ∗ FT[g(x)](ν) かけ算のフーリエ変換 フーリエ変換と フーリエ変換の ???🤔🤔

Slide 45

Slide 45 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 かけ算のフーリエ変換 12 *は,コンヴォリューション(畳み込み)といいます こうなります FT[f(x)g(x)](ν) = FT[f(x)](ν) ∗ FT[g(x)](ν) かけ算のフーリエ変換 フーリエ変換と フーリエ変換の ???🤔🤔

Slide 46

Slide 46 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 かけ算のフーリエ変換 12 *は,コンヴォリューション(畳み込み)といいます こうなります FT[f(x)g(x)](ν) = FT[f(x)](ν) ∗ FT[g(x)](ν) かけ算のフーリエ変換 フーリエ変換と フーリエ変換の ???🤔🤔 [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy

Slide 47

Slide 47 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 かけ算のフーリエ変換 12 *は,コンヴォリューション(畳み込み)といいます こうなります FT[f(x)g(x)](ν) = FT[f(x)](ν) ∗ FT[g(x)](ν) かけ算のフーリエ変換 フーリエ変換と フーリエ変換の ???🤔🤔 その意味は,少し後で… [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy

Slide 48

Slide 48 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングされた関数のフーリエ変換 13 つまり FT[fT (x)](ν) = FT[f(x)](ν) ∗ FT[combT (x)](ν)

Slide 49

Slide 49 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングされた関数のフーリエ変換 13 サンプリングされた 関数のフーリエ変換は つまり FT[fT (x)](ν) = FT[f(x)](ν) ∗ FT[combT (x)](ν)

Slide 50

Slide 50 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングされた関数のフーリエ変換 13 サンプリングされた 関数のフーリエ変換は もとの関数の フーリエ変換と つまり FT[fT (x)](ν) = FT[f(x)](ν) ∗ FT[combT (x)](ν)

Slide 51

Slide 51 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングされた関数のフーリエ変換 13 サンプリングされた 関数のフーリエ変換は もとの関数の フーリエ変換と くし形関数の フーリエ変換の つまり FT[fT (x)](ν) = FT[f(x)](ν) ∗ FT[combT (x)](ν)

Slide 52

Slide 52 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングされた関数のフーリエ変換 13 サンプリングされた 関数のフーリエ変換は もとの関数の フーリエ変換と くし形関数の フーリエ変換の つまり FT[fT (x)](ν) = FT[f(x)](ν) ∗ FT[combT (x)](ν) コンヴォリューション

Slide 53

Slide 53 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングされた関数のフーリエ変換 13 サンプリングされた 関数のフーリエ変換は もとの関数の フーリエ変換と くし形関数の フーリエ変換の つまり FT[fT (x)](ν) = FT[f(x)](ν) ∗ FT[combT (x)](ν) くし形関数のフーリエ変換は コンヴォリューション

Slide 54

Slide 54 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングされた関数のフーリエ変換 13 サンプリングされた 関数のフーリエ変換は もとの関数の フーリエ変換と くし形関数の フーリエ変換の つまり FT[fT (x)](ν) = FT[f(x)](ν) ∗ FT[combT (x)](ν) くし形関数のフーリエ変換は コンヴォリューション FT[combT (x)](ν) = 1 T comb1/T (ν)

Slide 55

Slide 55 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 サンプリングされた関数のフーリエ変換 13 サンプリングされた 関数のフーリエ変換は もとの関数の フーリエ変換と くし形関数の フーリエ変換の つまり FT[fT (x)](ν) = FT[f(x)](ν) ∗ FT[combT (x)](ν) くし形関数のフーリエ変換は くし形関数のフーリエ変換はくし形関数,ただし間隔が逆数 コンヴォリューション FT[combT (x)](ν) = 1 T comb1/T (ν)

Slide 56

Slide 56 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数とのコンヴォリューション 14 サンプリングされた 関数のフーリエ変換は もとの関数の フーリエ変換と くし形関数の フーリエ変換の FT[fT (x)](ν) = FT[f(x)](ν) ∗ FT[combT (x)](ν) コンヴォリューション

Slide 57

Slide 57 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数とのコンヴォリューション 14 サンプリングされた 関数のフーリエ変換は もとの関数の フーリエ変換と くし形関数の フーリエ変換の FT[fT (x)](ν) = FT[f(x)](ν) ∗ FT[combT (x)](ν) コンヴォリューション 「くし形関数とのコンヴォリューション」とは?

Slide 58

Slide 58 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数とのコンヴォリューション 14 サンプリングされた 関数のフーリエ変換は もとの関数の フーリエ変換と くし形関数の フーリエ変換の FT[fT (x)](ν) = FT[f(x)](ν) ∗ FT[combT (x)](ν) コンヴォリューション 「くし形関数とのコンヴォリューション」とは? 「デルタ関数とのコンヴォリューション」を並べたもの

Slide 59

Slide 59 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 さて,コンヴォリューションとは 15 コンヴォリューションの での値は t [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy 関数 と関数 を だけずらして重ねたときの, 重なりの面積 f g t

Slide 60

Slide 60 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 さて,コンヴォリューションとは 15 コンヴォリューションの での値は t [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy 関数 と関数 を だけずらして重ねたときの, 重なりの面積 f g t 【参考リンク】のサイトを使って説明します。

Slide 61

Slide 61 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 16 デルタ関数はここが0のとき以外はゼロ → 積分してもゼロ ある何かの関数 f(t) [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy

Slide 62

Slide 62 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 16 t = 0のとき デルタ関数はここが0のとき以外はゼロ → 積分してもゼロ ある何かの関数 f(t) [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy

Slide 63

Slide 63 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 [f * δ](t)| t=0 = ∫ ∞ −∞ f(y)δ(0 − y)dy デルタ関数とのコンヴォリューション 16 t = 0のとき デルタ関数はここが0のとき以外はゼロ → 積分してもゼロ ある何かの関数 f(t) [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy

Slide 64

Slide 64 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 [f * δ](t)| t=0 = ∫ ∞ −∞ f(y)δ(0 − y)dy デルタ関数とのコンヴォリューション 16 t = 0のとき デルタ関数はここが0のとき以外はゼロ → 積分してもゼロ y = 0 のとき以外は積分に無関係 ある何かの関数 f(t) [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy

Slide 65

Slide 65 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 [f * δ](t)| t=0 = ∫ ∞ −∞ f(y)δ(0 − y)dy デルタ関数とのコンヴォリューション 16 0 t f(t) t = 0のとき デルタ関数はここが0のとき以外はゼロ → 積分してもゼロ デルタ関数を積分すると y = 0 のときだけ 1 y = 0 のとき以外は積分に無関係 ある何かの 関数 f(t) ある何かの関数 f(t) [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy

Slide 66

Slide 66 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 [f * δ](t)| t=0 = ∫ ∞ −∞ f(y)δ(0 − y)dy デルタ関数とのコンヴォリューション 16 0 t f(t) t 0 t = 0のとき デルタ関数はここが0のとき以外はゼロ → 積分してもゼロ デルタ関数を積分すると y = 0 のときだけ 1 f (0) が取り出される y = 0 のとき以外は積分に無関係 ある何かの 関数 f(t) ある何かの関数 f(t) [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy

Slide 67

Slide 67 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 [f * δ](t)| t=0 = ∫ ∞ −∞ f(y)δ(0 − y)dy デルタ関数とのコンヴォリューション 16 0 t f(t) t 0 t = 0のとき デルタ関数はここが0のとき以外はゼロ → 積分してもゼロ デルタ関数を積分すると y = 0 のときだけ 1 f (0) が取り出される t = 1のとき y = 0 のとき以外は積分に無関係 ある何かの 関数 f(t) ある何かの関数 f(t) [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy

Slide 68

Slide 68 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 [f * δ](t)| t=1 = ∫ ∞ −∞ f(y)δ(1 − y)dy [f * δ](t)| t=0 = ∫ ∞ −∞ f(y)δ(0 − y)dy デルタ関数とのコンヴォリューション 16 0 t f(t) t 0 t = 0のとき デルタ関数はここが0のとき以外はゼロ → 積分してもゼロ デルタ関数を積分すると y = 0 のときだけ 1 f (0) が取り出される t = 1のとき y = 0 のとき以外は積分に無関係 ある何かの 関数 f(t) ある何かの関数 f(t) [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy

Slide 69

Slide 69 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 [f * δ](t)| t=1 = ∫ ∞ −∞ f(y)δ(1 − y)dy [f * δ](t)| t=0 = ∫ ∞ −∞ f(y)δ(0 − y)dy デルタ関数とのコンヴォリューション 16 0 t f(t) t 0 t = 0のとき デルタ関数はここが0のとき以外はゼロ → 積分してもゼロ デルタ関数を積分すると y = 0 のときだけ 1 f (0) が取り出される t = 1のとき y = 1 のとき以外は積分に無関係 y = 0 のとき以外は積分に無関係 ある何かの 関数 f(t) ある何かの関数 f(t) [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy

Slide 70

Slide 70 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 [f * δ](t)| t=1 = ∫ ∞ −∞ f(y)δ(1 − y)dy [f * δ](t)| t=0 = ∫ ∞ −∞ f(y)δ(0 − y)dy デルタ関数とのコンヴォリューション 16 0 t f(t) t 0 t = 0のとき デルタ関数はここが0のとき以外はゼロ → 積分してもゼロ デルタ関数を積分すると y = 0 のときだけ 1 f (0) が取り出される t = 1のとき y = 1 のとき以外は積分に無関係 デルタ関数は積分すると y = 1 のときだけ1 0 t f(t) y = 0 のとき以外は積分に無関係 ある何かの 関数 f(t) ある何かの関数 f(t) [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy

Slide 71

Slide 71 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 [f * δ](t)| t=1 = ∫ ∞ −∞ f(y)δ(1 − y)dy [f * δ](t)| t=0 = ∫ ∞ −∞ f(y)δ(0 − y)dy デルタ関数とのコンヴォリューション 16 0 t f(t) t 0 t = 0のとき デルタ関数はここが0のとき以外はゼロ → 積分してもゼロ デルタ関数を積分すると y = 0 のときだけ 1 f (0) が取り出される t = 1のとき y = 1 のとき以外は積分に無関係 デルタ関数は積分すると y = 1 のときだけ1 0 t f(t) t 0 f (1) が取り出される y = 0 のとき以外は積分に無関係 ある何かの 関数 f(t) ある何かの関数 f(t) [f * g](t) = ∫ ∞ −∞ f(y)g(t − y)dy

Slide 72

Slide 72 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 73

Slide 73 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 74

Slide 74 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 75

Slide 75 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 76

Slide 76 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 77

Slide 77 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 78

Slide 78 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 79

Slide 79 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 80

Slide 80 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 81

Slide 81 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 82

Slide 82 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 83

Slide 83 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 84

Slide 84 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 85

Slide 85 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 86

Slide 86 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 87

Slide 87 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 88

Slide 88 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される

Slide 89

Slide 89 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される つまり

Slide 90

Slide 90 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される つまり f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 91

Slide 91 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される つまり f(x) とデルタ関数のコンヴォリューションは,f(x) 自身 0 t f(t) * t 0 = 0 t f(t)

Slide 92

Slide 92 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される つまり f(x) とデルタ関数のコンヴォリューションは,f(x) 自身 0 t f(t) * t 0 = 0 t f(t) 画像の「ぼけ」は, 画像と「ぼけ関数」とのコンヴォリュー ション 画像の各点をデルタ関数と考えると, 各点に「ぼけ関数」が重ねられている

Slide 93

Slide 93 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 デルタ関数とのコンヴォリューション 17 0 t f(t) t 0 t = α のとき, f(α)が取り出される つまり f(x) とデルタ関数のコンヴォリューションは,f(x) 自身 0 t f(t) * t 0 = 0 t f(t) 画像の「ぼけ」は, 画像と「ぼけ関数」とのコンヴォリュー ション 画像の各点をデルタ関数と考えると, 各点に「ぼけ関数」が重ねられている 【参考リンク】で説明します。

Slide 94

Slide 94 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 95

Slide 95 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 96

Slide 96 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 97

Slide 97 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる 0 t f(t) f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 98

Slide 98 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる 0 t f(t) * f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 99

Slide 99 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる 0 t f(t) * t 0 f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 100

Slide 100 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる 0 t f(t) * = t 0 f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 101

Slide 101 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 0 t くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる 0 t f(t) * = t 0 f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 102

Slide 102 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 0 t くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる 0 t f(t) * = t 0 f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 103

Slide 103 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 0 t くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる 0 t f(t) * = t 0 f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 104

Slide 104 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 0 t くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる 0 t f(t) * = t 0 f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 105

Slide 105 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 0 t くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる 0 t f(t) * = t 0 f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 106

Slide 106 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 0 t くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる 0 t f(t) * = t 0 f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 107

Slide 107 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 0 t くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる 0 t f(t) * = t 0 f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 108

Slide 108 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 0 t くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる 0 t f(t) * = t 0 f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 109

Slide 109 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 0 t くし形関数とのコンヴォリューション 18 0 t f(t) * t 0 = 0 t f(t) くし形関数は,デルタ関数が等間隔に並んでいる くし形関数とのコンヴォリューションは,元の関数の「コピー」が等間隔に並んだものになる 0 t f(t) * = t 0 f(x) とデルタ関数のコンヴォリューションは,f(x) 自身

Slide 110

Slide 110 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 まとめると・サンプリングとフーリエ変換 19 x x f(x) fT (x) サンプリング フーリエ変換 ν T フーリエ変換 ν 1 / T ... ... νc –νc FT[f(x)](ν) FT[fT (x)](ν)

Slide 111

Slide 111 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 まとめると・サンプリングとフーリエ変換 19 x x f(x) fT (x) サンプリング フーリエ変換 ν T フーリエ変換 ν 1 / T ... ... νc –νc FT[f(x)](ν) FT[fT (x)](ν) カットオフ周波数

Slide 112

Slide 112 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 まとめると・サンプリングとフーリエ変換 19 x x f(x) fT (x) サンプリング フーリエ変換 ν T フーリエ変換 ν 1 / T ... ... νc –νc FT[f(x)](ν) FT[fT (x)](ν) カットオフ周波数 サンプリング間隔 T

Slide 113

Slide 113 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 まとめると・サンプリングとフーリエ変換 19 x x f(x) fT (x) サンプリング フーリエ変換 ν T フーリエ変換 ν 1 / T ... ... νc –νc FT[f(x)](ν) FT[fT (x)](ν) カットオフ周波数 サンプリング間隔 T サンプリング周波数 1/T

Slide 114

Slide 114 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 周波数空間での間隔 20 ν 1 / T ... ... 切り出す ν νc –νc νc –νc ν 1 / T ... ... 切り出す νc –νc ? (a) 2νc ≤ 1 / T (b) 2νc > 1 / T FT[fT(x)](ν) FT[f(x)](ν) FT[fT(x)](ν)

Slide 115

Slide 115 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 周波数空間での間隔 20 サンプリング周波数( )が, カットオフ周波数の2倍以上細かければ 1/T ν 1 / T ... ... 切り出す ν νc –νc νc –νc ν 1 / T ... ... 切り出す νc –νc ? (a) 2νc ≤ 1 / T (b) 2νc > 1 / T FT[fT(x)](ν) FT[f(x)](ν) FT[fT(x)](ν)

Slide 116

Slide 116 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 周波数空間での間隔 20 サンプリング周波数( )が, カットオフ周波数の2倍以上細かければ 1/T ν 1 / T ... ... 切り出す ν νc –νc νc –νc ν 1 / T ... ... 切り出す νc –νc ? (a) 2νc ≤ 1 / T (b) 2νc > 1 / T FT[fT(x)](ν) FT[f(x)](ν) FT[fT(x)](ν) ひとつだけ 切り出して

Slide 117

Slide 117 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 周波数空間での間隔 20 サンプリング周波数( )が, カットオフ周波数の2倍以上細かければ 1/T ν 1 / T ... ... 切り出す ν νc –νc νc –νc ν 1 / T ... ... 切り出す νc –νc ? (a) 2νc ≤ 1 / T (b) 2νc > 1 / T FT[fT(x)](ν) FT[f(x)](ν) FT[fT(x)](ν) これを 逆フーリエ変換して 元の関数に戻せる ひとつだけ 切り出して

Slide 118

Slide 118 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 周波数空間での間隔 20 サンプリング周波数( )が, カットオフ周波数の2倍以上細かければ 1/T ν 1 / T ... ... 切り出す ν νc –νc νc –νc ν 1 / T ... ... 切り出す νc –νc ? (a) 2νc ≤ 1 / T (b) 2νc > 1 / T FT[fT(x)](ν) FT[f(x)](ν) FT[fT(x)](ν) これを 逆フーリエ変換して 元の関数に戻せる サンプリング間隔が粗いと,周波数空間で重なり 合ってしまい元には戻せない (エイリアジング) ひとつだけ 切り出して

Slide 119

Slide 119 text

21 2024年度秋学期 画像情報処理 / 関西大学総合情報学部 浅野 晃 まとめ・サンプリング定理 21 ある関数(画像でも,音声でも)を,それのもつ最大の周波数の2倍以上の細かさで サンプリングしておけば, サンプリングされたもの(ディジタル画像,ディジタル音声)から 元の関数(画像や音声)を再現できる 例)CDはサンプリング周波数が44.1kHz   →22.05kHzまでの音声が記録できる 22.05kHzまでしか含まれていないとわかっているときには 正しく記録できる (録音時に,それ以上の周波数の成分が入らないように しなければならない)