Slide 1

Slide 1 text

Open-Retrieval Conversational Question Answering ࢲ࢚਋ (ܻࢲ஖ ࢎ੉঱౭झ౟, ೝಯ)

Slide 2

Slide 2 text

ѐਃ Open-Retrieval Conversational Question Answering

Slide 3

Slide 3 text

ѐਃ ѐਃ • SIGIR 20 • Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W. Bruce Croft, Mohit Iyyer • University of Massachusetts Amherst, Ant Financial, Alibaba Group • Conversational searchਸ ਤ೧ ConvQAܳ open retrieval settingਵ۽ ഛ੢ೞח Ѫ੉ ઱ਃ োҳ ਃ૑

Slide 4

Slide 4 text

ѐਃ ѐਃ • Conversational search਷ information retrieval੄ Ҿӓ੸ੋ ݾ಴઺ী ೞա • ୭Ӕ੄ োҳٜ਷ conversational searchܳ response rankingҗ conversational question answering۽ ೧Ѿ • ૊ ױࣽ൤ ׹߸ਸ ઱য૓ candidate setীࢲ ҊܰѢա ઱য૓ passageীࢲ spanਸ ࢶఖ • ੉ח conversational search৔৉ীࢲ retrieval੄ ӝୡ੸ੋ ৉ഝਸ ޖदೞח ߑध • ࠄ ֤ޙ਷ open-retrieval conversational question answering(ORConvQA) settingਸ ઁউೞৈ ޙઁܳ ೧Ѿ

Slide 5

Slide 5 text

ѐਃ ѐਃ • ORConvQAী ؀ೠ োҳܳ ਤ೧ OR-QuAC ؘ੉ఠ ࣇਸ ٜ݅঻ਵݴ ORConvQAܳ ਤೠ end-to-end दझమਸ ҳ୷ೞݴ ౟ےझನݠ ӝ߈੄ retriever, reranker ৬ reader ١ਸ ನೣ • OR-QuACܳ ؀࢚ਵ۽ ೠ ֤ޙ੄ प೷਷ learnable retriever੄ ઺ਃࢿਸ ૐݺ • ژೠ ݽٚ दझమ ҳࢿ ਃࣗ(retriever, reranker ৬ reader)ীࢲ history modelingਸ ࢎਊೞݶ दझమ੉ ௼ѱ ѐࢶ ؼ ࣻ ੓ ਺ਸ ࠁ੐

Slide 6

Slide 6 text

Dataset Open-Retrieval Conversational Question Answering

Slide 7

Slide 7 text

ORConvQA? Dataset • conversational search systemsਸ ҳ୷ೞӝ ਤೠ ୶о ױ҅۽ࢲ ׹߸ਸ Ҋܰ ӝ ੉੹ী retrieve evidenceܳ large collection۽ ࠗఠ Ѩ࢝ 1. ੿ࠁܳ ҳೞח ؀ചܳ ઁҕ(information seeker৬ information provider)৬ ೞח QuAC dataset 2. QuAC ૕ޙਸ context-independentೞѱ ׮द ੘ࢿೠ CANARD dataset 3. Wikipedia passage

Slide 8

Slide 8 text

Dataset

Slide 9

Slide 9 text

CANARD? Dataset • QuAC੄ dialogsח self-containedೞ૑ ঋ׮ח ড੼੉ ੓חؘ ੉ח ࠛ৮੹ೠ ୡӝ ૕ޙਵ۽ ੋ೧ ߊࢤ • ৘ܳ ٜয seekerীѱ a Chinese polymathic scientistੋ Zhang Hengী ؀೧ ߓ਋ۄҊ ೮חؘ ୐ ૕ޙ੉ "җ೟җ ӝࣿҗ যڃ ҙ ҅о ੓঻णפө?” ৓਺ • ੉۞ೠ ࠛౠ੿ೞҊ ݽഐೠ ୡӝ ૕ޙ਷ ؀ചܳ ೧ࢳೞӝ য۵ѱ ೞӝ ٸޙী ҕѐ Ѩ࢝ ജ҃ীࢲ ޙઁܳ ঠӝ • CANARD ؘ੉ఠ ࣁ౟ীࢲ ઁҕೞח context-independent rewritesਵ۽ ؀୓ೞৈ ੉ ޙઁܳ ೧Ѿ, Ӓۢ "Zhang Heng੉ җ೟ ӝ ࣿҗ যڃ ҙ҅о ੓঻णפө?"۽ ૕ޙ੉ ؀୓

Slide 10

Slide 10 text

CANARD? Dataset • ୐ ߣ૩ ૕ޙী ؀೧ࢲ݅ Ү୓ܳ ࣻ೯ೞݶ ؀ച ղীࢲ history dependenciesਸ Ӓ؀۽ ਬ૑ೞݶࢲ ؀ചо self-contained • QuAC੄ test set੉ ҕѐغয ੓૑ ঋӝ ٸޙী QuAC੄ dev setਸ ੉ਊೞৈ CANARD੄ test setਸ ݅ٞ • ژೠ QuAC੄ train set੄ 10%ܳ dev۽ ഝਊ. • CANARDী হח QuAC ૕ޙ਷ ತӝ೮ਵݴ ੉ܳ ੉ਊೠ ౵ࢤ ؘ੉ఠ ૘೤ੋ OR-QuAC੄ ؘ੉ఠ ా҅ח ׮਺җ э׮.

Slide 11

Slide 11 text

Model Open-Retrieval Conversational Question Answering

Slide 12

Slide 12 text

ݽ؛਷ Retriever, Reranker, Reader۽ ա׋׮ Model

Slide 13

Slide 13 text

ݽ؛਷ Retriever, Reranker, Reader۽ ա׋׮ Model

Slide 14

Slide 14 text

Passage Retriever Dataset • Passage Encoder • Question Encoder • Retrieval Score

Slide 15

Slide 15 text

Retrieval score ӝળਵ۽ ࢚ਤ top-Kѐ੄ ޙࢲܳ rerank৬ reader۽ ੹׳ Model

Slide 16

Slide 16 text

ݽ؛਷ Retriever, Reranker, Reader۽ ա׋׮ Model

Slide 17

Slide 17 text

Reranker& Reader Encoding Dataset • Input • Contextualized Representations • sequence representation

Slide 18

Slide 18 text

Reranker& Reader Dataset • Sequence Representation • Reranker (W_rr is vector) • Reader (span prediction)

Slide 19

Slide 19 text

Training Open-Retrieval Conversational Question Answering

Slide 20

Slide 20 text

Retriever pretraining Training • retrieval scores for the batch • to maximize the probability of the gold passage for each question • Pretraining loss Pretraning ੉റী passage encoderח offlineਵ۽ ك׮. Faissܳ ࢎਊ೧ࢲ Ѿҗܳ ࡳই১.

Slide 21

Slide 21 text

Concurrent Learning Training • Retriever loss • Reranker loss • Reader loss

Slide 22

Slide 22 text

Inference Training • Retrieval Ѿҗ Top-K ޙࢲܳ ݽف ੋಌ۠झ ೞৈ п ޙࢲ߹ spanਸ ৘ஏ • Retriever loss + Reranker loss + Reader lossо ઁੌ ੘਷ ޙࢲ੄ spanਸ ୭ઙ ੿׹ਵ۽ ৘ஏ

Slide 23

Slide 23 text

RESULTS Open-Retrieval Conversational Question Answering

Slide 24

Slide 24 text

Competing Method RESULTS • DrQA : TF-IDF + RNN based reader • BERTserini : BM25 + BERT reader
 • ORConvQA without history : our method + window size 0 • ORConvQA : our method • Evaluation Metric : word level F1, human equivalence score (HEQ), Mean Reciprocal Rank(MRR), Recall

Slide 25

Slide 25 text

DrQA < BERTserini < Ours w/o hist < Ours RESULTS

Slide 26

Slide 26 text

Ablation study RESULTS

Slide 27

Slide 27 text

History windows size ઑ੺ RESULTS

Slide 28

Slide 28 text

хࢎ೤פ׮✌ ୶о ૕ޙ ژח ҾӘೠ ੼੉ ੓׮ݶ ঱ઁٚ ইې োۅ୊۽ োۅ ઱ࣁਃ! ࢲ࢚਋ (ܻࢲ஖ ࢎ੉঱౭झ౟, ೝಯ) [email protected] Linked in. @pingpong