Slide 28
Slide 28 text
References I
Allen-Zhu, Z., A. Garg, Y. Li, R. Oliveira, and A. Wigderson (2018). “Operator Scaling via Geodesically Convex Optimization,
Invariant Theory and Polynomial Identity Testing”. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing (STOC), pp. 172–181.
Amitsur, S. (1966). “Rational identities and applications to algebra and geometry”. In: Journal of Algebra 3.3, pp. 304–359.
Cohn, P. M. (2003). “Skew fields”. In: Further Algebra and Applications. Springer, pp. 343–370.
Edmonds, J. (1967). “Systems of distinct representatives and linear algebra”. In: Journal of Research of the National Bureau of
Standards B71, pp. 241–245.
Garg, A., L. Gurvits, R. Oliveira, and A. Wigderson (2020). “Operator Scaling: Theory and Applications”. In: Foundations of
Computational Mathematics, pp. 223–290.
Gurvits, L. (2004). “Classical complexity and quantum entanglement”. In: Journal of Computer and System Sciences 69.3,
pp. 448–484.
Hamada, M. and H. Hirai (2021). “Computing the nc-rank via discrete convex optimization on CAT(0) spaces”. In: SIAM Journal
on Applied Algebra and Geometry 5.3, pp. 455–478. doi: 10.1137/20M138836X.
Ivanyos, G., Y. Qiao, and K. V. Subrahmanyam (2017). “Non-commutative Edmonds’ problem and matrix semi-invariants”. In:
computational complexity 26.3, pp. 717–763. issn: 1420-8954.
— (2018). “Constructive non-commutative rank computation is in deterministic polynomial time”. In: computational complexity
27.4, pp. 561–593.
Lovász, L. (1989). “Singular spaces of matrices and their application in combinatorics”. In: Bulletin of the Brazilian Mathematical
Society 20, pp. 87–99.
Murota, K. (2009). Matrices and Matroids for System Analysis. 2nd. Springer-Verlag, Berlin.
1 / 7