Slide 1

Slide 1 text

Dr. Javier Gonzalez-Sanchez [email protected] www.javiergs.info o ffi ce: 14 -227 CSC 570 Current Topics in Computer Science Applied Affective Computing Lecture 04. Brain-Computer

Slide 2

Slide 2 text

Homework

Slide 3

Slide 3 text

Reading | BCI Application 3

Slide 4

Slide 4 text

Previously …

Slide 5

Slide 5 text

Read 5

Slide 6

Slide 6 text

Work f low 6

Slide 7

Slide 7 text

Brain Computer Interface

Slide 8

Slide 8 text

Let Us Get Some Data 8

Slide 9

Slide 9 text

Signal • These sign a ls a re in the microvolt (μV) r a nge a nd a re very we a k, so they must be a mpli f ied a nd f iltered before further processing. • Fe a tures a re interpreted by m a chine le a rning models (pre-tr a ined a nd propriet a ry) to identify cognitive or emotion a l st a tes, or control sign a ls (e.g., left/right movement, concentr a tion levels). • In e a rly Emotiv, r a w EEG v a lues were represented a s 14-bit unsigned integers r a nging from 0 to 16383, with 4000 often considered “neutr a l resting” b a seline in cert a in con f igur a tions 9

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

Model 11

Slide 12

Slide 12 text

Brain 12 https://askabiologist.asu.edu/brain-regions

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

Emotiv EPOC X 14

Slide 15

Slide 15 text

Emotiv Insight 15

Slide 16

Slide 16 text

Emotiv MN8 16

Slide 17

Slide 17 text

Brain 17 Timestamp AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4 AccX AccY 101116112544901 4542.05 4831.79 4247.18 4690.26 4282.56 4395.38 4591.79 4569.23 4360 4570.77 4297.44 4311.28 4282.56 4367.18 1660 2003 101116112544901 4536.92 4802.05 4243.08 4673.85 4272.31 4393.33 4592.82 4570.26 4354.87 4570.26 4292.31 4309.74 4277.95 4370.77 1658 2002 101116112545010 4533.33 4798.97 4234.87 4669.74 4301.03 4396.92 4592.31 4570.77 4351.28 4561.03 4281.54 4301.54 4271.28 4363.59 1659 2003 101116112545010 4549.23 4839.49 4241.03 4691.28 4333.85 4397.95 4596.41 4567.18 4355.9 4556.41 4286.15 4306.15 4277.95 4369.74 1659 2003 101116112545010 4580 4865.64 4251.79 4710.26 4340 4401.54 4603.59 4572.82 4360 4558.46 4298.97 4324.62 4296.41 4395.9 1657 2004 101116112545010 4597.44 4860 4252.82 4705.64 4350.26 4412.31 4603.59 4577.44 4357.44 4555.9 4295.38 4329.23 4296.41 4414.36 1656 2005 101116112545010 4584.62 4847.69 4246.67 4690.26 4360 4409.23 4597.44 4569.74 4351.79 4549.74 4278.97 4316.92 4272.82 4399.49 1656 2006 101116112545010 4566.15 4842.05 4238.46 4684.1 4322.05 4389.74 4592.82 4566.67 4351.79 4549.74 4274.36 4310.26 4262.05 4370.77 1655 2005 101116112545010 4563.59 4844.62 4231.79 4687.69 4267.69 4387.69 4594.36 4580 4361.03 4556.41 4278.97 4310.77 4274.36 4370.77 1653 2006 101116112545010 4567.18 4847.18 4233.33 4688.72 4285.13 4409.23 4602.05 4589.23 4368.21 4560 4280.51 4310.77 4281.54 4390.26 1655 2004 101116112545010 4562.05 4840.51 4227.18 4673.85 4300 4405.13 4611.28 4601.03 4376.41 4561.54 4280 4303.59 4279.49 4374.87 1652 2000

Slide 18

Slide 18 text

Brain 18 14 channels 128 samples per second 1,792 values por second 107,520 values per minute 6,451,200 values per hour

Slide 19

Slide 19 text

Brain 19 Timestamp Short Term Excitement Long Term Excitement Engagement Meditation Frustration 101116091145065 0.447595 0.54871 0.834476 0.333844 0.536197 101116091145190 0.447595 0.54871 0.834476 0.333844 0.536197 101116091145315 0.447595 0.54871 0.834476 0.333844 0.536197 101116091145440 0.487864 0.546877 0.834146 0.339548 0.54851 101116091145565 0.487864 0.546877 0.834146 0.339548 0.54851 101116091145690 0.487864 0.546877 0.834146 0.339548 0.54851 101116091145815 0.487864 0.546877 0.834146 0.339548 0.54851 101116091145940 0.521663 0.545609 0.839321 0.348321 0.558228 101116091146065 0.521663 0.545609 0.839321 0.348321 0.558228 101116091146190 0.521663 0.545609 0.839321 0.348321 0.558228 101116091146315 0.521663 0.545609 0.839321 0.348321 0.558228 101116091146440 0.509297 0.544131 0.84401 0.358717 0.546771 101116091146565 0.509297 0.544131 0.84401 0.358717 0.546771 101116091146690 0.509297 0.544131 0.84401 0.358717 0.546771 101116091146815 0.509297 0.544131 0.84401 0.358717 0.546771 101116091146941 0.451885 0.541695 0.848087 0.368071 0.533919

Slide 20

Slide 20 text

Brain 20 5 samples per second 5 affective states 25 values per second 1,500 values per minute 90,000 values per hour

Slide 21

Slide 21 text

Emotiv

Slide 22

Slide 22 text

Architecture | Old Bluetooth API for Developers Your App

Slide 23

Slide 23 text

Architecture | New 23 Bluetooth Your App WebSocket (server) WebSocket (client) API for Developers

Slide 24

Slide 24 text

Architecture | ADASLite 24 Bluetooth Your App WebSocket (server) WebSocket (client) API for Developers

Slide 25

Slide 25 text

Emotiv 25

Slide 26

Slide 26 text

Emotiv 26

Slide 27

Slide 27 text

Emotiv 27

Slide 28

Slide 28 text

Emotiv 28

Slide 29

Slide 29 text

Issues https://www.emotiv.com/knowledge-base/connecting-to-service/ 29

Slide 30

Slide 30 text

Emotiv 30

Slide 31

Slide 31 text

Emotiv 31

Slide 32

Slide 32 text

Emotiv 32

Slide 33

Slide 33 text

Emotiv 33

Slide 34

Slide 34 text

Theory vs Reality 34

Slide 35

Slide 35 text

Questions 35

Slide 36

Slide 36 text

CSC 570 Applied Affective Computing Javier Gonzalez-Sanchez, Ph.D. [email protected] Spring 2025 Copyright. These slides can only be used as study material for the class CSC 570 at Cal Poly. They cannot be distributed or used for another purpose.