Slide 1

Slide 1 text

JJ Hermes University of Warwick

Slide 2

Slide 2 text

Mean Earth--Moon

Slide 3

Slide 3 text

Motivation and Outline •  Extremely Low-Mass (ELM, <0.3 M¤ ) White Dwarfs (WDs) –  Set Galactic gravitational wave foreground –  eLISA verification binaries –  Progenitors of Galactic exotica: merged WDs and subdwarfs, AM CVn systems,

Slide 4

Slide 4 text

•  WDs: Burnt-out cores of all low-mass stars initially <8-10 M¤ •  WDs are the endpoints of stellar evolution –  Their progenitors lost considerable mass White Dwarfs, the Quantum Dots

Slide 5

Slide 5 text

Kleinman  et  al.  2013,  ApJS,  204,  5 •  All WDs discussed today have pure hydrogen atmospheres (DA) –  4/5 of WDs are DA; strong gravitational settling •  Estimate WD masses from observed Balmer line profiles: Teff /log(g) He-Core WDs CO-Core WDs ONe-Core WDs Mass Distribution of Known White Dwarfs

Slide 6

Slide 6 text

•  The Galaxy is not old enough for a single star to evolve into a

Slide 7

Slide 7 text

Latest  ELM  Survey  release: Brown  et  al.  2013,  ApJ,  769,  66 •  ELM Survey: u-g, g-r color selection from Sloan Digital Sky Survey (SDSS) •  Discovery spectroscopy from

Slide 8

Slide 8 text

•  ELM Survey: SDSS u-g, g-r color selection •  Discovery spectroscopy from

Slide 9

Slide 9 text

Discovery spectroscopy determines the binary and atmospheric parameters blue-shifted red-shifted Brown  et  al.  2012,  ApJ,  744,  142 T eff  =  10,540  ±  170  K log(g)  =  6.01  ±  0.06 P orb  =  87.996  ±  0.006  min K 1  =  508  ±  4  km  s-­‐‑1 M 2  >  1.10  M¤      if  M 1  =  0.17  M¤ t merge  <  170  Myr J1741+6526: An 88-min WD+WD binary

Slide 10

Slide 10 text

Asin(φ) = 0.50 ± 0.08 % Doppler beaming Acos(2φ) = 1.30 ± 0.08 % Ellipsoidal variations J1741+6526: An 88-min WD+WD binary •  Follow-up photometry yields further physical constraints

Slide 11

Slide 11 text

•  Doppler beaming: Radiation is beamed toward our line of sight, proportional to how fast the source is moving (V): •  (Also a small factor for the

Slide 12

Slide 12 text

•  Ellipsoidal variations: Changing projected area of a tidally distorted star •  Tidal bulge rotates once per orbit –  We see its oblique (fat) side

Slide 13

Slide 13 text

J0751-0141: A New Eclipsing WD+WD Binary Kilic  et  al.  2014,   MNRAS,  438,  L26 P orb  =  115.22  min 3.2% rel. amplitude

Slide 14

Slide 14 text

Yellow: Our eight new tidally distorted ELM WDs Black: Eclipsing WD+WD binaries Pink: Eclipsing

Slide 15

Slide 15 text

Some Open Questions Regarding ELM WDs – CNO flashing episodes and HR-diagram loops – Hydrogen-layer masses in He-core WDs – The ubiquity of metals in the lowest-gravity WDs – Tidal torques on binary inspiral

Slide 16

Slide 16 text

•  Lowest-mass WDs (≤0.18 M¤ ) have

Slide 17

Slide 17 text

ELM WDs and Predicted CNO Flashes Althaus  et  al.  2013,  A&A,  557,  A19 •  Two low-mass WDs of different masses often cross the same points in a T eff —log(g)  diagram •  There is a non-uniqueness to using T eff ,log(g) for ELM WD mass

Slide 18

Slide 18 text

ELM WDs and Predicted CNO Flashes Althaus  et  al.  2013,  A&A,  557,  A19 •  For example, take a 10,000 K, log(g) = 6.60 WD:

Slide 19

Slide 19 text

Some Open Questions Regarding ELM WDs – CNO flashing episodes and HR-diagram loops – Hydrogen-layer masses in He-core WDs – The ubiquity of metals in the lowest-gravity WDs – Tidal torques on binary inspiral

Slide 20

Slide 20 text

Discovery of Pulsations in Low-Mass WDs Hermes  et  al.  2012,  ApJ,  750,  L28 Hermes  et  al.  2013,  ApJ,  765,  102 Hermes  et  al.  2013,  MNRAS,  436,  3573 Kilic  et  al.  2015,  MNRAS,  446,  26 •  CNO flashes erode the hydrogen layer mass of ELM WDs •  An observational test would come from pulsating WDs: asteroseismology •  Since October 2011 we discovered the first five pulsating low-mass,

Slide 21

Slide 21 text

Pulsating Hydrogen-Atmosphere (DA) WDs •  Global g-mode pulsations driven by a hydrogen partial ionization zone

Slide 22

Slide 22 text

G117-B15A: A 0.59 M¤ Pulsating CO-Core WD •  Stable pulsating WD •  dP/dt ~ 4 x 10-15 s s-1 •  Main pulsation modes: –  P1 = 215.2 s –  P2 = 304.1 s –  P3 = 270.5 s •  Can multiply the star’s frequencies by 300,000 to convert to audible range: Kepler  et  al.  2005,  ApJ,  634,  1311 target comparison

Slide 23

Slide 23 text

J1614+1912: A 0.20 M¤ Pulsating ELM WD •  The pulsating ELM WD with the shortest-period variability •  Main pulsation modes: –  P1 = 1262.7 s –  P2 = 1184.1 s •  Scaling frequencies by 300,000 to an audible range: Hermes  et  al.  2013,  MNRAS,  436,  3573 target comparison

Slide 24

Slide 24 text

J2228+3623: A 0.16 M¤ Pulsating ELM WD •  The pulsating ELM WD with the longest-period variability •  Main pulsation modes: –  P1 = 4181 s –  P2 = 3252 s –  P3 = 6229 s •  Scaling frequencies by 300,000 to an audible range: target comparison Hermes  et  al.  2013,  MNRAS,  436,  3573

Slide 25

Slide 25 text

J1112+1117: A 0.17 M¤ Pulsating ELM WD Hermes  et  al.  2013,  ApJ,  765,  102 •  Main pulsation modes: –  P1 = 2258.5 s –  P2 = 2539.7 s –  P3 = 1884.6 s –  P4 = 2855.7 s –  P5 = 1792.9 s •  Scaling frequencies by 300,000 to an audible range: target comparison

Slide 26

Slide 26 text

Full Seismology Will Reveal ELM WD Structure •  We are currently only able to qualitatively match the periods to WD models •  Near to having a large grid of He-core WD models with different hydrogen layer masses to perform asteroseismology Van  Grootel  et  al.  2013,  ApJ,  762,  57 MH /M* = 10-4 MH /M* = 10-2 J1840 J1518 J1518 J1112 Theoretical periods for ell=1 g-modes modes vs. Observed Periods

Slide 27

Slide 27 text

Some Open Questions Regarding ELM WDs – CNO flashing episodes and HR-diagram loops – Hydrogen-layer masses in He-core WDs – The ubiquity of metals in the lowest-gravity WDs – Tidal torques on binary inspiral

Slide 28

Slide 28 text

Lowest-Gravity WDs All Show Metals Hermes  et  al.  2014,  MNRAS,  444,  1674

Slide 29

Slide 29 text

•  Roughly 1 in every 2-3 WDs we find has some metal pollution •  Metals should settle out of the high-surface-gravity atmosphere very quickly (of order days) •  Consensus: Metals are from accreted, tidally disrupted debris •  Abundances match bulk

Slide 30

Slide 30 text

•  Ca II lines phase with the ~288 km/s RV of the Balmer lines –  Metals are photospheric, not interstellar •  We obtained an HST/COS

Slide 31

Slide 31 text

•  This ELM WD is carbon deficient, just like planetary debris •  BUT: Oxygen abundance inconsistent with rocky accretion:

Slide 32

Slide 32 text

GALEX J1717: A 5.9-hr, Metal-Rich He-WD+WD R 1  =  0.093  ±  0.013  R¤ i  =  86.9  ±  0.4  deg P orb  =  5.90724895(41)  hr -­‐‑20 v rot  =  50+30  km  s-­‐‑1 P rot  =  2.3+2.0  hr Hermes  et  al.  2014,  MNRAS,  444,  1674 •  Prot < Porb but not yet formally significant •  Direct test of tidal synchronization! -­‐‑1.0

Slide 33

Slide 33 text

Some Open Questions Regarding ELM WDs – CNO flashing episodes and HR-diagram loops – Hydrogen-layer masses in He-core WDs – The ubiquity of metals in the lowest-gravity WDs – Tidal torques on binary inspiral

Slide 34

Slide 34 text

phase = 0 •  We detected eclipses in April 2011 •  This is the most compact detached binary system currently known! J0651+2844: A 12.75-min WD+WD Binary Brown  et  al.  2011,  ApJ,  737,  L23

Slide 35

Slide 35 text

J0651+2844: A 12.75-min WD+WD Binary Average distance between the Earth and the Moon: 384,400 km

Slide 36

Slide 36 text

(from Phase 0 to Phase 1 is 12.75 minutes) Hermes  et  al.  2012,  ApJ,  757,  L21 P orb  =  765.20644(95)  s K 1  =  616.9  ±  5.0  km  s-­‐‑1 i  =  86.3  ±  1.0  deg T eff,1  =  16,340  ±  260  K M 1  =  0.252  ±  0.04  M¤ T eff,2  =  10,370  ±  360  K M 2  =  0.50  ±  0.04  M¤ J0651+2844: A 12.75-min WD+WD Binary

Slide 37

Slide 37 text

Orbital Decay in J0651+2844 After just 13 months we confirmed orbital decay from gravitational radiation. Hermes  et  al.  2012,  ApJ,  757,  L21

Slide 38

Slide 38 text

We expect dPorb /dt = (-0.26 ± 0.05) ms/yr and observe (-0.2834 ± 0.0039) ms/yr! – a 1.4% measurement! Orbital Decay in J0651+2844

Slide 39

Slide 39 text

•  This 12.75-min WD+WD binary is decaying > 3.5 times faster than the 7.75-hr Hulse-Taylor binary pulsar, which was the first indirect detection of gravitational radiation (1993 Nobel prize in physics) Weisberg  et  al.  2010,  ApJ,  722,  1030 J0651+2844 PSR B1913+16 dP/dt = -0.283 ms/yr dP/dt = -0.076 ms/yr Orbital Decay in J0651+2844

Slide 40

Slide 40 text

•  Gravity bends space; it effectively determines geometry of space •  General Relativity: Any mass in nonuniform, nonspherical motion emits gravitational radiation •  Ripples in space-time caused by gravitational radiation carry away energy •  This is an energy leak and acts

Slide 41

Slide 41 text

•  J0651+2844 is an excellent verification sourcefor direct detection of

Slide 42

Slide 42 text

•  Tidal torques should increase the rate of orbital decay in J0651+2844 –  Additional angular momentum is lost from the orbit to spin-up the WDs to remain synchronized, leading to >5% faster rate of orbital decay (e.g.,  Piro  2011,  ApJ,  740,  L53;  Fuller  &   Lai  2012,  MNRAS,  421,  426) The Fate of the WDs in J0651+2844

Slide 43

Slide 43 text

Conclusions •  Extremely Low-Mass (ELM, <0.3 M¤ ) White Dwarfs (WDs) constrain the endpoints of stellar and binary evolution •  “Low-Mass White Dwarfs Need Friends” –  Close companions provide many ways to observationally constrain systems •  Pulsations allow us a new way to explore He-Core, ELM WD Interiors •  ELM WDs provide a unique test for tidal effects on binary inspiral •  The first directly detected gravitational waves and confirmed EM counterpart systems will likely be ELM WDs D. Berry, GSFC!

Slide 44

Slide 44 text

No content

Slide 45

Slide 45 text

Hermes  et  al.  2014,  ApJ,  792,  39

Slide 46

Slide 46 text

Corsico  &  Althaus.  2014,  A&A,  569,  106

Slide 47

Slide 47 text

No content