Slide 1

Slide 1 text

MP3 (aka MPEG1-LayerIII)ͷ ཁૉٕज़ aikiriao 2024.3 1 / 71

Slide 2

Slide 2 text

͋Β͢͡ 1. MP3 ֓ཁ MPEG/Audio ͷྺ࢙ ίʔσοΫߏ଄ 2. ϋΠϒϦουϑΟϧλόϯΫ ϑΟϧλόϯΫ MDCT (Modified Discrete Cosine Transform) ΤΠϦΞε࡟ݮόλϑϥΠԋࢉ 3. ྔࢠԽ 4. ූ߸Խ 5. ௌ֮৺ཧϞσϧ II 6. dist10 Τϯίʔμͷ֎෦ɾ಺෦ϧʔϓ 2 / 71

Slide 3

Slide 3 text

1. MP3 ֓ཁ MPEG/Audio ͷྺ࢙ ίʔσοΫߏ଄ 2. ϋΠϒϦουϑΟϧλόϯΫ ϑΟϧλόϯΫ MDCT (Modified Discrete Cosine Transform) ΤΠϦΞε࡟ݮόλϑϥΠԋࢉ 3. ྔࢠԽ 4. ූ߸Խ 5. ௌ֮৺ཧϞσϧ II 6. dist10 Τϯίʔμͷ֎෦ɾ಺෦ϧʔϓ 3 / 71

Slide 4

Slide 4 text

MPEG/Audioͷྺ࢙ MPEG/Audio ͷܥේɽ[1] ΑΓҾ༻ 4 / 71

Slide 5

Slide 5 text

MPEG/Audioͷྺ࢙ MPEG/Audio ͷؔ܎ɽ[1] ΑΓҾ༻ 5 / 71

Slide 6

Slide 6 text

MPEG1ͷཁૉٕज़ ▶ ϨΠϠ I,II,III ͷॱ ʹѹॖ཰޲্ ▶ ϨΠϠ I,II ͸αϒ όϯυූ߸Խ͕ ϝΠϯ ▶ ௌ֮৺ཧϞσϧ ͸ I,II ͱ III Ͱҟ ͳΔ [1] ΑΓҾ༻ 6 / 71

Slide 7

Slide 7 text

MP3ͷΤϯίʔμߏ଄ ϋΠϒϦουϑΟϧλόϯΫ 32 όϯυͷϑΟϧλό ϯΫͷޙɼ18 ఺ͷ MDCT → 576 ఺ͷεϖΫ τϧΛܭࢉ ྔࢠԽ ྟքଳҬɾϚεΩϯάͷ৘ใΛݩʹεϖΫ τϧΛྔࢠԽ ූ߸Խ ௿ҬΛਫ਼ີɾߴҬΛߥ͘ූ߸Խ 7 / 71

Slide 8

Slide 8 text

MP3ͷσίʔμߏ଄ Τϯίʔμͷٯͷૢ࡞ 8 / 71

Slide 9

Slide 9 text

1. MP3 ֓ཁ MPEG/Audio ͷྺ࢙ ίʔσοΫߏ଄ 2. ϋΠϒϦουϑΟϧλόϯΫ ϑΟϧλόϯΫ MDCT (Modified Discrete Cosine Transform) ΤΠϦΞε࡟ݮόλϑϥΠԋࢉ 3. ྔࢠԽ 4. ූ߸Խ 5. ௌ֮৺ཧϞσϧ II 6. dist10 Τϯίʔμͷ֎෦ɾ಺෦ϧʔϓ 9 / 71

Slide 10

Slide 10 text

M ෼ׂϑΟϧλόϯΫ[2] ▶ ৴߸Λ M ݸͷଳҬʹ෼ׂ ▶ M ݸͷ෼ੳϑΟϧλ hk ɾ߹੒ϑΟϧλ fk Λ࢖༻ 10 / 71

Slide 11

Slide 11 text

ίαΠϯมௐϑΟϧλόϯΫ[2, 3] ίαΠϯมௐϑΟϧλόϯΫ 1 ͭͷ࣮܎਺ɾ௚ઢҐ૬ϓϩτλΠϓϑΟϧλ p0 [n] ͔ Βɼ෼ੳϑΟϧλ hk ͱ߹੒ϑΟϧλ fk Λ࣍Ͱઃఆɿ hk [n] = 2p0 [n] cos π M k + 1 2 n − L − 1 2 + θk (1) fk [n] = hk [L − 1 − n] (2) Mɿ෼ׂଳҬ਺ɼLɿλοϓ௕ɼθk = (−1)k π 4 ৄࡉ͸ิ଍ 1 અʹهࡌ 11 / 71

Slide 12

Slide 12 text

MP3ͷϑΟϧλόϯΫ M = 32, L = 33 ͱͨ͠ίαΠϯมௐϑΟϧλόϯΫʹ ͍͕ۙҟͳΔʂʢθk ͕ͳ͍ʂʣ hk [n] = p0 [n] cos π 32 k + 1 2 (n − 16) (3) fk [n] = 32p0 [n] cos π 32 k + 1 2 (n + 16) (4) p0 [n] = −Cn ⌊n/64⌋ ͕ۮ਺ Cn ⌊n/64⌋ ͕ح਺ (5) Cn (n = 0, ..., 511) ͸ن֨Ͱઃఆ 12 / 71

Slide 13

Slide 13 text

ϑΟϧλόϯΫͷಛੑ 0 100 200 300 400 500 index 0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 amplitude MP3 Encoder prototype filter coefficients ▶ p0 [n] ͷܗঢ়ɽରশʢ= ௚ઢҐ૬ಛੑΛ΋ͭʣ ɽ 13 / 71

Slide 14

Slide 14 text

ϑΟϧλόϯΫͷप೾਺ಛੑ όϯΫ k = 0, ..., 15 ͷप೾਺ಛੑ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 normalized frequency 200 180 160 140 120 100 80 60 amplitude Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7 Bank 8 Bank 9 Bank 10 Bank 11 Bank 12 Bank 13 Bank 14 Bank 15 14 / 71

Slide 15

Slide 15 text

ϑΟϧλόϯΫͷप೾਺ಛੑ όϯΫ k = 16, ..., 31 ͷप೾਺ಛੑ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 normalized frequency 200 180 160 140 120 100 80 60 amplitude Bank 16 Bank 17 Bank 18 Bank 19 Bank 20 Bank 21 Bank 22 Bank 23 Bank 24 Bank 25 Bank 26 Bank 27 Bank 28 Bank 29 Bank 30 Bank 31 15 / 71

Slide 16

Slide 16 text

ϑΟϧλόϯΫͷ࣮૷ ϓϩάϥϜͰ͸ɼೖྗ x[t] ͔Βόϯυ k ͷग़ྗ yk [t] Λ yk [t] = 63 s=0 tk,s 7 u=0 x[t − s − 64u]Cs+64u tk,s := cos π 32 k + 1 2 (s − 16) Ͱܭࢉɽ͜ͷ͕ࣜ FIR ϑΟϧλग़ྗܭࢉࣜ yk [t] = 511 n=0 x[t − n]hk [n] = 511 n=0 x[t − n]p0 [n]tk,n (6) ͔Βಋ͔ΕΔ͜ͱΛࣔ͢ɽ 16 / 71

Slide 17

Slide 17 text

ϑΟϧλόϯΫͷ࣮૷ (6) ࣜΛมܗ͍ͯ͘͠ͱɼ yk[t] = 511 n=0 x[t − n]p0[n]tk,n = 7 u=0 63 s=0 x[t − s − 64u]p0[s + 64u]tk,s+64u = 7 u=0 63 s=0 x[t − s − 64u](−1)uCs+64utk,s+64u (7) ͜͜Ͱɼ tk,s+64u = cos π 32 k + 1 2 (s + 64u − 16) = cos π 32 k + 1 2 (s − 16) + π (2k + 1) u = cos π 32 k + 1 2 (s − 16) cos [π(2k + 1)u] − sin π 32 k + 1 2 (s − 16) sin [π(2k + 1)u] = (−1)utk,s ͔ͩΒɼ͜ΕΛࣜ (7) ʹ୅ೖ͢Ε͹ɼ yk[t] = 7 u=0 63 s=0 x[t − s − 64u]Cs+64utk,s = 63 s=0 tk,s 7 u=0 x[t − s − 64u]Cs+64u ϓϩάϥϜͷܭࢉ͕ࣜಋ͔Εͨɽ 17 / 71

Slide 18

Slide 18 text

ϑΟϧλόϯΫ͸׬શ࠶ߏ੒͔ʁ ▶ Cn ͷಋग़ํ๏͕ෆ໌ɽݫີʹ׬શ࠶ߏ੒ੑΛࣔ ͤͳ͍ ▶ ࠶ߏ੒৴߸ ˆ x[n] ͕ೖྗ৴߸ͷ஗Ԇ+ఆ਺ഒʹͳΔ ͔؍࡯                      yk [n] = 511 i=0 hk [i]x[n − i] όϯΫ k ͷ෼ੳϑΟϧλग़ྗ zk [n] = 511 i=0 fk [i]yk [n − i] όϯΫ k ͷ߹੒ϑΟϧλग़ྗ ˆ x[n] = 31 k=0 zk [n] ࠶ߏ੒৴߸ 18 / 71

Slide 19

Slide 19 text

ϑΟϧλόϯΫ͸׬શ࠶ߏ੒͔ʁ ˆ x[n] = 31 k=0 zk [n] = 31 k=0 511 i=0 fk [i]yk [n − i] = 31 k=0 511 i=0 fk [i] 511 j=0 hk [j]x[n − i − j] = 31 k=0 511 i=0 511 j=0 fk [i]hk [j]x[n − i − j] = 31 k=0 1022 m=0 min{511,m} i=max{0,m−511} fk [i]hk [m − i]x[n − m] (m := i + j) = 1022 m=0 x[n − m] min{511,m} i=max{0,m−511} 31 k=0 fk [i]hk [m − i] =g[m] (8) 19 / 71

Slide 20

Slide 20 text

ϑΟϧλόϯΫ͸׬શ࠶ߏ੒͔ʁ ▶ g[m] ͷάϥϑʢӈਤʣ ▶ g[m] ≈ 32δm,512 ͩ ͔Βɼ ˆ x[n] ≈ 32x[n − 512] ۙࣅతʹ׬શ࠶ߏ੒ 0 128 256 384 512 640 768 896 1024 0 5 10 15 20 25 30 amplitude 0 128 256 384 512 640 768 896 1024 samples 250 200 150 100 50 0 50 abs amplitude (dB) 20 / 71

Slide 21

Slide 21 text

MP3ͷMDCT (Modified DCT) ▶ αϒόϯυϑΟϧλͰ 32 ଳҬʹ෼ׂͨ͠৴߸ʹ ର͠ɼ18 ఺ MDCT Λ࣮ߦ ▶ ग़ྗɿ32 × 18 = 576 ఺ͷεϖΫτϧσʔλ ▶ MDCT ͷલɾIMDCT ͷޙͰ૭ؔ਺Λద༻ ▶ MP3 Ͱ͸ 4 छྨͷ૭ؔ਺Λ࢖༻ ▶ ૭ؔ਺͸׬શ࠶ߏ੒৚݅Λຬͨ͢ 21 / 71

Slide 22

Slide 22 text

MDCTͱIMDCT ೖྗ৴߸Λ x[n]ɼ࠶ߏ੒৴߸Λ y[n] ͱͯ͠ MDCT (Modified Discrete Cosine Transform) Xk = 2N−1 n=0 x[n] cos π N k + 1 2 n + 1 2 + N 2 (9) IMDCT (Inverse MDCT) y[n] = 2 N N−1 k=0 Xk cos π N k + 1 2 n + 1 2 + N 2 (10) ▶ ࣌ؒྖҬ͸ 2N ఺ɼप೾਺ྖҬ͸ N ఺ͷม׵ ʢk = 0, ..., N − 1ʣ 22 / 71

Slide 23

Slide 23 text

MDCTͱ׬શ࠶ߏ੒৚݅ (10) ࣜʹ (9) ࣜΛ୅ೖͯ͠੔ཧ͢Δͱ y[n] = x[n] − x[N − 1 − n] (n = 0, ..., N − 1) x[n] + x[3N − 1 − n] (n = N, ..., 2N − 1) (11) ͱͳΔʢূ໌͸ิ଍ʣ ɽ ϋʔϑΦʔόʔϥοϓͰॲཧ͢Δͱ͖ɼx[n], y[n] ʹ͏ ·͘૭ؔ਺Λద༻͢Δͱ׬શ࠶ߏ੒ʹͰ͖Δɽ ͦͷ৚ ݅͸ʁ 23 / 71

Slide 24

Slide 24 text

ϋʔϑΦʔόʔϥοϓΞυͷखॱ Τϯίʔυ σίʔυ 24 / 71

Slide 25

Slide 25 text

MDCTͱ׬શ࠶ߏ੒৚݅ Princen–Bradley ৚݅ʢ׬શ࠶ߏ੒৚݅ʣ[4] ௕͞ 2N ͷ෼ੳ૭Λ wa ɼ߹੒૭Λ ws ͱͨ͠ͱ͖ɼ wa [n]ws [n] + wa [n + N]ws [n + N] = 1 (12) wa [n + N]ws [2N − 1 − n] = wa [n]ws [N − 1 − n] (13) n = 0, ..., N − 1 ͳΒ͹ɼMDCTɾIMDCT ʹΑΔϋʔϑΦʔόʔϥοϓ Ξυ͸׬શ࠶ߏ੒ 25 / 71

Slide 26

Slide 26 text

Princen–Bradley৚݅ͷಋग़ m ϑϨʔϜ໨ͷ n ࣌ࠁͷೖྗ xm [n] ͸ɼϑϨʔϜ͋ͨ Γ N αϯϓϧͰεϥΠυ͓ͯ͠Γ xm [n] = xm−1 [n + N] (14) ͕੒Γཱͭͱ͢Δɽ૭͔͚ͨ͠৴߸ gm [n] Λ gm [n] := wa [n]xm [n] (n = 0, ..., 2N − 1) (15) ͱॻ͘ɽgm [n] Λ MDCTɾIMDCT ͯ͠࠶ߏ੒ͨ͠৴߸ zm [n] ͸ɼ(11) ࣜΑΓɼ zm [n] = gm [n] − gm [N − 1 − n] (n = 0, ..., N − 1) gm [n] + gm [3N − 1 − n] (n = N, ..., 2N − 1) (16) 26 / 71

Slide 27

Slide 27 text

Princen–Bradley৚݅ͷಋग़ ϋʔϑΦʔόʔϥοϓΞυͨ݁͠ՌΛ ˆ xm [n] ͱॻ͘ͱɼ (16) ࣜΑΓɼ ˆ xm [n] = ws [n]zm [n] + ws [n + N]zm−1 [n + N] = ws [n](gm [n] − gm [N − 1 − n]) + ws [n + N](gm−1 [n + N] + gm−1 [3N − 1 − (n + N)]) = ws [n](wa [n]xm [n] − wa [N − 1 − n]xm [N − 1 − n]) + ws [n + N](wa [n + N]xm−1 [n + N] + wa [2N − 1 − n]xm−1 [2N − 1 − n]) = ws [n](wa [n]xm [n] − wa [N − 1 − n]xm [N − 1 − n]) + ws [n + N](wa [n + N]xm [n] + wa [2N − 1 − n]xm [N − 1 − n]) = xm [n](wa [n]ws [n] + wa [n + N]ws [n + N]) + xm [N − 1 − n](wa [n + N]ws [2N − 1 − n] − wa [n]ws [N − 1 − n]) ͜ͷ݁ՌΛ xm [n] = ˆ xm [n] ͱͯ྆͠ลൺֱ͢Δ͜ͱͰ ৚͕݅ಘΒΕΔ 27 / 71

Slide 28

Slide 28 text

MP3ͱPrincen–Bradley৚݅ Princen–Bradley ৚݅ʢ෼ੳ૭ͱ߹੒૭͕ಉҰʣ ෼ੳɾ߹੒૭͕ಉ͡ w[n] = wa [n] = ws [n] ͱ͖ɼ w[n]2 + w[n + N]2 = 1 (17) w[n + N]w[2N − 1 − n] = w[n]w[N − 1 − n] (18) n = 0, ..., N − 1 ͱ͘ʹ૭ؔ਺͕ରশ w[n] = w[2N − 1 − n] Ͱ͋Ε͹ɼ w[n + N]w[2N − 1 − n] = w[N − 1 − n]w[2N − 1 − n] = w[N − 1 − n]w[n] ͱͳΓࣜ (18) ͕ຬͨ͞ΕΔ ∗1 ∗1ٯʹɼࣜ (18) Λຬͨͯ͠΋ରশͱ͸ݶΒͳ͍ɽw[n] = w[n+N]w[2N−1−n] w[N−1−n] ͕ͩɼҰൠʹ w[n + N] ̸= w[N − 1 − n] ͔ͩΒ w[n] ̸= w[2N − 1 − n]ɽ 28 / 71

Slide 29

Slide 29 text

MP3ͱMDCT – 4छྨͷ૭ؔ਺ छྨ ఆٛ long w[n] = sin π 36 n + 1 2 (n = 0, ..., 35) short w[n] = sin π 12 n − 6k + 1 2 (k = 1, 2, 3, n = 6k, ..., 6k + 11) start w[n] =        sin π 36 n + 1 2 (n = 0, ..., 17) 1 (n = 18, ..., 23) sin π 12 n − 18 + 1 2 (n = 24, ..., 29) 0 (n = 30, ..., 35) stop w[n] =        0 (n = 0, ..., 5) sin π 12 n − 6 + 1 2 (n = 6, ..., 11) 1 (n = 12, ..., 17) sin π 36 n + 1 2 (n = 18, ..., 35) ▶ short ͷ૭௕͸ 12ɼͦΕҎ֎͸ 36 29 / 71

Slide 30

Slide 30 text

MP3ͱMDCT – 4छྨͷ૭ؔ਺ 0 5 10 15 20 25 30 35 0.0 0.2 0.4 0.6 0.8 1.0 long 0 5 10 15 20 25 30 35 0.0 0.2 0.4 0.6 0.8 1.0 start 0 5 10 15 20 25 30 35 0.0 0.2 0.4 0.6 0.8 1.0 stop 0 5 10 15 20 25 30 35 0.0 0.2 0.4 0.6 0.8 1.0 short 30 / 71

Slide 31

Slide 31 text

MP3ͱMDCT – ૭ؔ਺ͷঢ়ଶભҠ ঢ়ଶભҠ͸ௌ֮৺ཧϞσϧʹΑΓܾఆ 31 / 71

Slide 32

Slide 32 text

MP3ͱPrincen–Bradley৚݅ αΠϯ૭ w[n] = sin π 2N n + 1 2 (n = 0, ..., 2N − 1) (19) ͸ Princen–Bradley ৚݅Λຬͨ͢ɽ ʢূ໌ʣࣜ (17) ͸ɿ w[n]2 + w[n + N]2 = sin2 π 2N n + 1 2 + sin2 π 2N n + N + 1 2 = sin2 π 2N n + 1 2 + cos2 π 2N n + 1 2 = 1 ࣜ (18) ͸ɼαΠϯ૭͕ରশͰ͋Δ͜ͱΑΓࣔ͞ΕΔɿ w[2N − 1 − n] = sin π 2N 2N − 1 − n + 1 2 = sin π + π 2N −n − 1 2 = sin − π 2N n + 1 2 + π = sin π 2N n + 1 2 = w[n] 32 / 71

Slide 33

Slide 33 text

MP3ͱPrincen–Bradley৚݅ ▶ long, short ૭͸αΠϯ૭ͦͷ΋ͷͳͷͰ׬શ࠶ ߏ੒ ▶ ঢ়ଶભҠ࣌ʹ׬શ࠶ߏ੒ʹͳΔ͔ʁ 1. long → start 2. stop → longɿ1. ͷରশέʔε 3. start → short 4. short → stopɿ3. ͷରশέʔε 1. ͱ 3. ͚ͩ֬ೝ 33 / 71

Slide 34

Slide 34 text

MP3ͱPrincen–Bradley৚݅ 1. long → start ▶ ϋʔϑΦʔόʔ ϥοϓΞυ͢Δ۠ ؒͰαΠϯ૭ʹ ͳ͍ͬͯΔͨΊɼ׬ શ࠶ߏ੒ 0 5 10 15 20 25 30 35 40 45 50 55 0.0 0.2 0.4 0.6 0.8 1.0 long to start window long (first-half) long (last-half) start (first-half) start (last-half) 34 / 71

Slide 35

Slide 35 text

MP3ͱPrincen–Bradley৚݅ 3. start → short ▶ n = 0, ..., 5ɿstart ૭ ͕ 1, short ૭͕ 0 ͳ ͷͰ׬શ࠶ߏ੒ ▶ n = 6, ..., 11ɿαΠ ϯ૭ʹͳ͍ͬͯΔ ͨΊ׬શ࠶ߏ੒ ▶ n = 12, ..., 17ɿstart ૭͕ 0, short ૭Ͳ͏ ͠ͰαΠϯ૭ʹ ͳ͍ͬͯΔͨΊ׬ શ࠶ߏ੒ 0 5 10 15 20 25 30 35 40 45 50 55 0.0 0.2 0.4 0.6 0.8 1.0 start to short window start (first-half) start (last-half) short (first-half) short (last-half) 35 / 71

Slide 36

Slide 36 text

ΤΠϦΞε࡟ݮόλϑϥΠԋࢉ ▶ ϑΟϧλόϯ Ϋ͸ɼྡ઀ό ϯΫͷप೾਺ ੒෼ʢΤΠϦ Ξεʣ͕ࠞೖ ▶ ྡ઀όϯΫͷ εϖΫτϧΛ ࢖͍ΤΠϦΞ ε࡟ݮʢ[5]ʣ 0 50 100 150 200 250 frequency bin 160 140 120 100 80 60 amplitude (dB) Aliasing reduction butterfly effect (no butterfly) 36 / 71

Slide 37

Slide 37 text

ΤΠϦΞε࡟ݮόλϑϥΠԋࢉ ▶ εϖΫτϧΛ Xk ͱͨ͠ͱ͖ɼ X18k−i ← csi X18k−i − cai X18k+i+1 (20) X18k+i+1 ← cai X18k−i + csi X18k+i+1 (21) k = 1, ..., 31, i = 0, ..., 7 ▶ ܎਺ csi , cai ͷఆٛ csi := 1 1 + c2 i , cai := ci 1 + c2 i (22) ci (i = 0, ...7) ͸ن֨Ͱઃఆ [6] ΑΓҾ༻ 37 / 71

Slide 38

Slide 38 text

ΤΠϦΞε࡟ݮόλϑϥΠԋࢉ ▶ 14-17 όϯυ ͷप೾਺ಛੑ ൺֱ ▶ όλϑϥΠԋ ࢉʹΑΓɼྡ ઀όϯΫͱަ ࠩ͢Δৼ෯ ͕-2dB ΄ͲԼ ʹҠಈʢվળʣ 105 110 115 120 125 130 135 140 145 150 frequency bin 80 75 70 65 60 55 50 amplitude (dB) Aliasing reduction butterfly effect for center bands Band 14 butterfly Band 14 Band 15 butterfly Band 15 Band 16 butterfly Band 16 Band 17 butterfly Band 17 38 / 71

Slide 39

Slide 39 text

ΤΠϦΞε࡟ݮόλϑϥΠԋࢉ ▶ ৼ෯͕খ͘͞ ͳΔͱःஅಛ ੑ͸ѱԽ ▶ ՄௌҬଳΛ༏ ઌͨ݁͠Ռʁ 0 50 100 150 200 250 frequency bin 160 140 120 100 80 60 amplitude (dB) Aliasing reduction butterfly effect 39 / 71

Slide 40

Slide 40 text

1. MP3 ֓ཁ MPEG/Audio ͷྺ࢙ ίʔσοΫߏ଄ 2. ϋΠϒϦουϑΟϧλόϯΫ ϑΟϧλόϯΫ MDCT (Modified Discrete Cosine Transform) ΤΠϦΞε࡟ݮόλϑϥΠԋࢉ 3. ྔࢠԽ 4. ූ߸Խ 5. ௌ֮৺ཧϞσϧ II 6. dist10 Τϯίʔμͷ֎෦ɾ಺෦ϧʔϓ 40 / 71

Slide 41

Slide 41 text

ඇઢܗྔࢠԽ ϒϩοΫ௕͕ 36(long, start, stop) ͷͱ͖ɼྔࢠԽεϖ Ϋτϧ Xq i ɼٯྔࢠԽεϖΫτϧ ˆ Xi ͸ ∗2 Xq i = round sign(Xi ) Xi (Gl i )−1 3 4 (23) ˆ Xi = sign(Xq i )|Xq i |4 3 Gl i (24) Gl i = 21 4 g2−1 2 (1+scale)(sli +pi ) (25) ▶ gɿάϩʔόϧήΠϯ ▶ scaleɿεέʔϧϑΝΫλͷεέʔϧʢdist10 ΤϯίʔμʔͰ͸ৗʹ 0ʣ ▶ sli ɿεέʔϧϑΝΫλ ▶ pi ɿϓϦΤϯϑΝγε૿෯஋ʢdist10 ΤϯίʔμʔͰ͸ৗʹ 0ʣ ∗2round Λআ͚͹ɼٯྔࢠʹΑΓݩʹ໭Δ ˆ Xi = sign(Xi )|Xq i |4 3 Gl i = sign(Xi ) |Xi (Gl i )−1|3 4 4 3 Gl i = Xi (Gl i )−1Gl i = Xi 41 / 71

Slide 42

Slide 42 text

ඇઢܗྔࢠԽ ϒϩοΫ௕͕ 12(short) ͷͱ͖ɼ Xq i = round sign(Xi ) Xi (Gs i )−1 3 4 (26) ˆ Xi = sign(Xq i )|Xq i |4 3 Gs i (27) Gs i = 21 4 g22sbgainb2−1 2 (1+scale)ssi (28) ▶ sbgainb ɿαϒϒϩοΫͷήΠϯʢdist10 ΤϯίʔμʔͰ͸ৗʹ 0ʣ ▶ ssi ɿγϣʔτϒϩοΫͷεέʔϧϑΝΫλ 42 / 71

Slide 43

Slide 43 text

3/4৐ͷޮՌ x, x3 4 ͱͦΕΒͷඍ෼ 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 x x^(3/4) derivertive x derivertive x^(3/4) ▶ x3 4 ͸ 0 ۙ๣Ͱߴײ౓ʢlog ʹ͍ۙʣ ▶ 0 ۙ๣͸ࡉ͔͘ɼ≈ 0.3 Ҏ্͸ߥ͘ྔࢠԽ 43 / 71

Slide 44

Slide 44 text

1. MP3 ֓ཁ MPEG/Audio ͷྺ࢙ ίʔσοΫߏ଄ 2. ϋΠϒϦουϑΟϧλόϯΫ ϑΟϧλόϯΫ MDCT (Modified Discrete Cosine Transform) ΤΠϦΞε࡟ݮόλϑϥΠԋࢉ 3. ྔࢠԽ 4. ූ߸Խ 5. ௌ֮৺ཧϞσϧ II 6. dist10 Τϯίʔμͷ֎෦ɾ಺෦ϧʔϓ 44 / 71

Slide 45

Slide 45 text

MP3ͷූ߸Խ ྔࢠԽεϖΫτϧΛ۠෼ʹ෼͚ͯූ߸Խ big value େ͖͍஋͸ઢܗྔࢠԽΛ݉༻ ▶ region0,1,2 ͰҟͳΔϋϑϚϯςʔϒϧ Λ࢖༻ count1 data {−1, 0, 1} ͷΈͰූ߸Խ ▶ 1 ͭͷϋϑϚϯςʔϒϧΛ࢖༻ zero 0 ͷΈʢූ߸Խ͠ͳ͍ʣ 45 / 71

Slide 46

Slide 46 text

MP3ͷූ߸Խʢৄࡉʣ big value ͷූ߸Խ ▶ ਺஋ 2 ͭ૊ Xq i , Xq i+1 Λ X = 16|Xq i | + |Xq i+1 | (29) ͱͯ͠ූ߸Խɽඇ 0 ͷ৔߹ʹූ߸ bit Λ෇Ճ ▶ ઢܗූ߸Խ͢Δ͔ͷ͖͍͠஋͸ςʔϒϧຖʹઃఆ count1 data ͷූ߸Խ ▶ ਺஋ 4 ͭ૊ Xq i , Xq i+1 , Xq i+2 , Xq i+3 Λ X = 8s(Xq i+2 ) + 4s(Xq i+3 ) + 2s(Xq i ) + s(Xq i+1 ) (30) ͱͯ͠ූ߸Խʢs(x)ɿx ̸= 0 ͳΒ 1ɼx = 0 ͳΒ 0ʣ ɽ ඇ 0 ͷ৔߹ʹූ߸ bit Λ෇Ճ 46 / 71

Slide 47

Slide 47 text

1. MP3 ֓ཁ MPEG/Audio ͷྺ࢙ ίʔσοΫߏ଄ 2. ϋΠϒϦουϑΟϧλόϯΫ ϑΟϧλόϯΫ MDCT (Modified Discrete Cosine Transform) ΤΠϦΞε࡟ݮόλϑϥΠԋࢉ 3. ྔࢠԽ 4. ූ߸Խ 5. ௌ֮৺ཧϞσϧ II 6. dist10 Τϯίʔμͷ֎෦ɾ಺෦ϧʔϓ 47 / 71

Slide 48

Slide 48 text

ௌ֮৺ཧϞσϧIIͷ֓ཁ ▶ LayerIII ͷௌ֮৺ཧϞσϧʢLayerI, II ͱ͸ҟͳΔʣ ▶ ग़ྗɿ৴߸ରϚεΫൺ (SMR∗3)ɼϒϩοΫλΠϓ ▶ ॲཧखॱ 1. ϑϨʔϜ੾Γग़͠ɾ૭͔͚ɾFFT 2. Unpredictability ܭࢉ 3. ύʔςΟγϣϯ͝ͱͷΤωϧΪʔܭࢉ 4. ޿͕Γؔ਺ (Spreading function) ͷ৞ΈࠐΈ 5. ϊΠζڐ༰Ϩϕϧܭࢉ 6. ௌ͖͍֮͠஋ܭࢉ 7. ஌֮Τϯτϩϐʔ (Psychoacoustic entropy) ܭࢉɾϒ ϩοΫλΠϓ൑ఆ 8. ৴߸ରϚεΫൺ (SMR) ܭࢉ ∗3Signal-to-Masking Ratio 48 / 71

Slide 49

Slide 49 text

ϑϨʔϜ੾Γग़͠ɾ૭͔͚ɾFFT ▶ long ͱ short ͷ 2 ͭΛܭࢉ ▶ long ͸αΠζ 1024 ▶ short ͸αΠζ 256 Λ 3 ͭɽ৴߸ s[n] ͷ s[128b + n] b = 1, 2, 3 Λ࢖༻ ▶ Hanning ૭Λద༻ ▶ εϥΠυ (hop) αΠζ͸ 576ʢ=DCT εϖΫτϧ αΠζʣ FFT ܎਺Λ wl(long)ɼwsb(short, b = 1, 2, 3) ͱදه 49 / 71

Slide 50

Slide 50 text

ϑϨʔϜ੾Γग़͠ɾ૭͔͚ɾFFT 102 103 104 Frequency (Hz) 20 0 20 40 60 80 100 120 Power (dB) energy ϐΞϊ (F0 =220Hz) ͷ long ͷΤωϧΪʔʢύϫʔεϖΫτϧʣ 50 / 71

Slide 51

Slide 51 text

Unpredictabilityܭࢉ Unpredictability cw = ༧ଌͣ͠Β͞ͷई౓ cw[n] =      |wl[n]−wl∗[n]| |wl[n]|+|wl∗[n]| 0 ≤ n ≤ 5 |ws2 [j]−ws∗[j]| |ws2 [j]|+|ws∗[j]| j = ⌊(n + 2)/4⌋, 6 ≤ n ≤ 205 0.4 206 ≤ n ≤ 512 (31) ▶ wl∗, ws∗ɿৼ෯ͱҐ૬Λ௚ઢ༧ଌͨ͠εϖΫτϧ ▶ ௚ઢ༧ଌͷࣜʢwl′ ͸લϑϨʔϜͷ wlʣ ɿ wl∗[n] = (2|wl′[n]| − |wl′′[n]|) exp[j(2 arg(wl′[n]) − arg(wl′′[n]))] (32) ws∗[n] = (2|ws1 [n]| − |ws3 [n]|) exp[j(2 arg(ws1 [n]) − arg(ws3 [n]))] (33) ▶ ༧ଌ͕౰ͨΕ͹ cw[n] = 0ɼ֎ΕΔͱ cw[n] = 1 51 / 71

Slide 52

Slide 52 text

ύʔςΟγϣϯ͝ͱͷΤωϧΪʔܭࢉ प೾਺ϏϯΛ”ύʔςΟγϣϯ (partition)”୯Ґʹ෼ׂ ▶ ebl, ebsɿύʔςΟγϣϯ಺ͷΤωϧΪʔΛ߹ࢉ ▶ cbɿUnpredictability ͰॏΈ͚ͮͨ͠ΤωϧΪʔΛ ߹ࢉ long, short ͷύʔςΟγϣϯ b Λ Pl b , Ps b ͱॻ͘ͱɼ ebl[b] = n∈Pl b |wl[n]|2 (34) cb[b] = n∈min Pl b cw[n]|wl[n]|2 (35) ebs[b] = n∈min Ps b |ws[n]|2 (36) 52 / 71

Slide 53

Slide 53 text

ύʔςΟγϣϯ͝ͱͷΤωϧΪʔܭࢉ 0 10 20 30 40 50 60 Partition number 0 2500 5000 7500 10000 12500 15000 17500 20000 Frequency (Hz) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 min partition frequency max partition frequency αϯϓϦϯάप೾਺ 44.1kHz ͷ long ύʔςΟγϣϯɽBark εέʔ ϧࡉ෼ԽͱΈͳͤΔɽ਺஋ϥϕϧ͸εέʔϧϑΝΫλ൪߸ɽ 53 / 71

Slide 54

Slide 54 text

ύʔςΟγϣϯ͝ͱͷΤωϧΪʔܭࢉ 102 103 104 Frequency (Hz) 20 0 20 40 60 80 100 120 Power (dB) energy partitoned energy ϐΞϊ (F0 =220Hz) ͷ long ύʔςΟγϣϯ෼ׂޙͷΤωϧΪʔ ebl 54 / 71

Slide 55

Slide 55 text

޿͕Γؔ਺ͷ৞ΈࠐΈ ΤωϧΪʔʹ޿͕Γؔ਺ (Spreading function)SFl b , SFs b Λ৞ΈࠐΈɼௐ೾੒෼ͷϚεΩϯάΛߟྀ ▶ ecbl, ecbsɿSFl b , SFs b Λ৞Έ͜Μͩ ebl, ebs ▶ ctbɿSFl b Λ৞Έ͜Μͩ cb ecbl[b] = k SFl b [k]ebl[k] (37) ctb[b] = k SFl b [k]cb[k] (38) ecbs[b] = k SFs b [k]ebs[k] (39) 55 / 71

Slide 56

Slide 56 text

޿͕Γؔ਺ͷ৞ΈࠐΈ 102 103 104 Frequency (Hz) 20 0 20 40 60 80 100 120 Power (dB) energy partitoned energy convolved partitoned energy ϐΞϊ (F0 =220Hz) ͷ޿͕Γؔ਺Λ৞Έ͜ΜͩΤωϧΪʔ ecbl 56 / 71

Slide 57

Slide 57 text

Schroederͷ޿͕Γؔ਺SFschroeder [7] όʔΫεέʔϧʹม׵ͨ͠प೾਺ͷࠩ ∆z = z(fϚεΩʔ ) − z(fϚεΧʔ ) Λ༻͍ͯɼ 10 log10 SFschroeder (∆z) = 15.81 + 7.5(∆z + 0.474) − 17.5 1 + (∆z + 0.474)2 (40) (40) ࣜͰٻ·Δ஋͸ dB εέʔϧɽ1010 log10 SFschroeder(∆z) 10 Ͱৼ෯εέʔϧʹม׵ 57 / 71

Slide 58

Slide 58 text

MP3ͷ޿͕Γؔ਺SF Schroeder ͷ޿͕Γؔ਺Λमਖ਼ tx = 3∆z ∆z ≤ 0 1.5∆z ∆z > 0 (41) x = 8 min{(tx − 0.5)2 − 2(tx − 0.5), 0} (42) y = 15.811389 + 7.5(tx + 0.474) − 17.5 1 + (tx + 0.474)2 (43) ͱͯ͠ɼSF ΛҎԼͰܭࢉɽ(41) ࣜΑΓɼ௿Ҭଆͷݮ ਰ͕ΑΓૣ͍ ∗4 10 log10 SF(∆z) = x + y y ≥ −60 0 otherwise (44) ∗4ύʔςΟγϣϯ͸εέʔϧϑΝΫλͷ໿ 3 ഒ෼ׂ͕ࡉ͔͍ͨΊʁ 58 / 71

Slide 59

Slide 59 text

޿͕Γؔ਺ͷ֓ܗ 0 5 10 15 20 25 Bark scale 70 60 50 40 30 20 10 0 Gain (dB) MP3 bark:4.28 Schroeder bark:4.28 MP3 bark:9.21 Schroeder bark:9.21 MP3 bark:13.28 Schroeder bark:13.28 ͍͔ͭ͘ͷόʔΫ஋Ͱͷ޿͕Γؔ਺ɽഁઢ͸ Schroeder[7]ɽMP3 Ͱ͸-60dB ҎԼͷεέʔϧ͸ 0 ʹؙΊࠐΉͨΊઢ్͕੾Ε͍ͯΔɽ 59 / 71

Slide 60

Slide 60 text

ϊΠζڐ༰Ϩϕϧܭࢉ ύʔςΟγϣϯ b ͷྔࢠԽϊΠζڐ༰ϨϕϧΛܭࢉ ∗5 tbb ܭࢉ tbb = 0 ͸ϊΠζɼtbb = 1 ͸ௐ೾੒෼Λࣔ͢ई౓ cbb = log max ctb[b] ecbl[b] , 0.01 (45) tbb = min{1.0, max{0.0, −0.299 − 0.43cbb}} (46) SNR ܭࢉ ϚεΫͷՃॏ࿨Ͱ SNR(dB) Λܭࢉɽ29.0 ͸ௐ೾ʹΑ ΔϊΠζͷϚεΫɼ6.0 ͸ϊΠζʹΑΔௐ೾ͷϚεΫ snr = max {minvalb , 29.0tbb + 6.0(1 − tbb)} (47) ڐ༰Ϩϕϧܭࢉ SNR ʹΤωϧΪʔΛ৐ͯ͡ڐ༰Ϩϕϧ nbl Λಘ Δɽ޿͕Γؔ਺Ͱ૿͑ͨΤωϧΪʔΛ໭͢ nbl[b] = ecbl[b] k SFb [k] × 10− snr 10 (48) ∗5short ͸লུɽSNR ΛςʔϒϧҾ͖ͯ͠ܭࢉ͢ΔҎ֎ಉ༷ͷͨΊ 60 / 71

Slide 61

Slide 61 text

ϊΠζڐ༰Ϩϕϧܭࢉ 102 103 104 Frequency (Hz) 20 0 20 40 60 80 100 120 Power (dB) energy partitoned energy convolved partitoned energy noise permissive level ϐΞϊ (F0 =220Hz) ͷϊΠζڐ༰Ϩϕϧ nbl 61 / 71

Slide 62

Slide 62 text

ௌ͖͍֮͠஋ܭࢉ લϑϨʔϜͷϊΠζڐ༰Ϩϕϧͱ࠷খՄௌύϫʔΛߟ ྀ͠ɼ͜ΕΛௌ͖͍֮͠஋ thrl ͱ͢Δ thrl[b] = max qthrb , min{2nbl′[b], 16nbl′′[b], nbl[b]} (49) ▶ qthrb ɿ࠷খՄௌύϫʔ ▶ nbl′, nbl′′ɿલͱ͞ΒʹͦͷલͷϊΠζڐ༰Ϩϕϧ ▶ લϑϨʔϜͷϊΠζΛ࢒͢ɽϓϦΤίʔରࡦ 62 / 71

Slide 63

Slide 63 text

ௌ͖͍֮͠஋ܭࢉ 102 103 104 Frequency (Hz) 20 0 20 40 60 80 100 120 Power (dB) energy partitoned energy convolved partitoned energy noise permissive level threshold ϐΞϊ (F0 =220Hz) ͷௌ͖͍֮͠஋ thrl 63 / 71

Slide 64

Slide 64 text

஌֮Τϯτϩϐʔܭࢉ ஌֮Τϯτϩϐʔ PE ΛҎԼͰܭࢉ PE = b |Pl b | log ebl[b] + 1 thrl[b] (50) ϑϨʔϜͷූ߸ԽʹඞཁͳϏοτ਺ͷ໨҆ ∗6 ▶ PE ≥ 1800 ͳΒ͹ short ϒϩοΫͱ൑ఆɽ͞΋ͳ ͘͹ long ϒϩοΫͱ൑ఆ ∗7 ∗6ಋग़͸ิ଍ 3 ࢀর ∗7dist10 Ͱ͸ҎલͷϒϩοΫ൑ఆ݁ՌΛอ࣋ɽ൑ఆͱϒϩοΫͷঢ়ଶભҠʹ ै͍݁ՌΛ start,stop ʹมߋ 64 / 71

Slide 65

Slide 65 text

஌֮Τϯτϩϐʔܭࢉ 0 1 2 3 4 5 6 0.50 0.25 0.00 0.25 0.50 Amplitude Wave form 0 1 2 3 4 5 6 time (sec) 1000 2000 3000 4000 5000 Perceptual entropy Perceptual Entropy (PE) PE threshold ϐΞϊ (F0 =220Hz) ͷ೾ܗͱௌ֮Τϯτϩϐʔ PE ͷมԽ 65 / 71

Slide 66

Slide 66 text

৴߸ରϚεΫൺ(SMR)ܭࢉ (ௌ͖͍֮͠஋)/(৴߸ύϫʔ) Λܭࢉɽಉ࣌ʹप೾਺෼ ׂΛεέʔϧϑΝΫλόϯυʹἧ͑Δɽ εέʔϧϑΝΫλόϯυ k ʹଐ͢ύʔςΟγϣϯͷू ߹Λ Pk ͱॻ͘ͱɼ en[k] = w1 [k]eb[min Pk ] + w2 [k]eb[max Pk ] + P ∈Pk b∈P eb[b] (51) thm[k] = w1 [k]thr[min Pk ] + w2 [k]thr[max Pk ] + P ∈Pk b∈P thr[b] (52) ͱͯ͠ʢw1 , w2 ͸ྡ઀όϯυؒͷॏΈఆ਺ ∗8ʣ ɼ ratio[k] = thm[k] en[k] en[k] > 0 0 otherwise (53) ∗8w1 [k] + w2 [k − 1] = 1 ͕੒ཱɽಋग़ํ๏͸ෆ໌... 66 / 71

Slide 67

Slide 67 text

৴߸ରϚεΫൺ(SMR)ܭࢉ 102 103 104 Frequency (Hz) 40 30 20 10 0 Signal-to-Mask Ratio (SMR) (dB) ratio 40 50 60 70 80 90 100 110 Power (dB) partitoned energy threshold ϐΞϊ (F0 =220Hz) ͷ৴߸ରϚεΫൺ ratio 67 / 71

Slide 68

Slide 68 text

1. MP3 ֓ཁ MPEG/Audio ͷྺ࢙ ίʔσοΫߏ଄ 2. ϋΠϒϦουϑΟϧλόϯΫ ϑΟϧλόϯΫ MDCT (Modified Discrete Cosine Transform) ΤΠϦΞε࡟ݮόλϑϥΠԋࢉ 3. ྔࢠԽ 4. ූ߸Խ 5. ௌ֮৺ཧϞσϧ II 6. dist10 Τϯίʔμͷ֎෦ɾ಺෦ϧʔϓ 68 / 71

Slide 69

Slide 69 text

dist10ͷΤϯίʔυϧʔϓ ྔࢠԽήΠϯ (g, sli , ssi ) ͱϋϑ Ϛϯූ߸ςʔϒϧΛܾΊΔॲཧ ▶ ֎෦ϧʔϓʢྔࢠԽϊΠζ ੍ޚʣ ɾ಺෦ϧʔϓʢූ߸௕ ੍ޚʣͷ૬ޓ܁Γฦ͠ ▶ શεϖΫτϧ஋͕ 0 ͳΒ͹ εΩοϓ 69 / 71

Slide 70

Slide 70 text

֎෦ϧʔϓ ྔࢠԽϊΠζ͕ௌ͖͍֮͠஋Λ ௒͑ͳ͍Α͏ʹ੍ޚ͢Δॲཧ ϓϦΤϯϑΝγε ߴҬόϯυ͕ ௌ͖͍֮͠஋Λ௒͑ ͍ͯͨΒɼ͖͍͠஋Λ ૿෯ ࿪Έ੍ޚ ௌ͖͍֮͠஋Λ௒͑ ͨεέʔϧϑΝΫλ όϯυͷྔࢠԽε ςοϓ෯Λݮগ 70 / 71

Slide 71

Slide 71 text

಺෦ϧʔϓ ූ߸௕͕࢖༻ՄೳϏοτҎԼʹ ͳΔΑ͏ʹ੍ޚ͢Δॲཧ ྔࢠԽεςοϓ෯૿Ճ ྔࢠԽε ςοϓ෯Λ૿Ճʢά ϩʔόϧήΠϯ g ૿Ճ ʹ૬౰ʣ ූ߸௕ܭࢉ εϖΫτϧͷ۠෼ ׂɾςʔϒϧબ୒Λ ߦͬͯූ߸௕Λܭࢉ 71 / 71

Slide 72

Slide 72 text

7. ࢀߟจݙ 8. ূ໌ ϑΟϧλόϯΫ MDCT ஌֮Τϯτϩϐʔಋग़ [19] 1 / 42

Slide 73

Slide 73 text

ࢀߟจݙͷ঺հ ▶ [4]ɿPrincen–Bradley ͷ׬શ࠶ߏ੒৚݅ͷಋग़ ▶ [6]ɿMP3 ͷ֓ཁઆ໌ɽϔομɾαΠυΠϯϑΥϝʔγϣϯͷ಺༰ͷղઆ͸͔ͳΓৄ͍͠ ▶ [1]ɿMPEG/Audio ͷଞɼ2000 ೥୅લ൒ͷଞͷίʔσοΫͷ֓ཁΛղઆ ▶ [8]ɿMPEG ඪ४Խʹؔ͢Δॻ෺ɽٕज़͸֓ཁఔ౓ ▶ [2]ɿϚϧνϨʔτʹؔΘΔ৴߸ॲཧΛ޿ൣʹղઆ ▶ [3]ɿϑΟϧλόϯΫʹؔ͢Δৄࡉॻ ▶ [9]ɿDCT ʹؔ͢Δৄ͍͠ղઆ ▶ [10, 11, 12, 13, 14]ɿٕज़ղઆͱ؆қ MP3 ίʔσοΫͷ࣮૷ྫ ▶ [15]ɿMP3 ͷιʔε (dist10) ͷղઆɽͨͩ͠໦Λݟͯ৿Λݟͣͳҹ৅ɽ࣮૷ͷิ଍આ໌ ͱͯ͠͸༏ल͕ͩɼίʔυΛ਺ࣜʹ௚༁ͨ͠ॻ͖ํͷͨΊɼཧղͣ͠Β͍ɽ ▶ [16]ɿम࢜࿦จɽݚڀ͸ߴ଎Խ͕ͩɼMP3 ͷ֓ཁ͕·ͱ·͍ͬͯΔ ▶ [17]ɿ౦๺େҏ౻ڭतʹΑΔ MP3 ֓ཁղઆ ▶ [5, 18]ɿΤΠϦΞε࡟ݮͷ࿦จ ▶ [19]ɿϊΠζϚεΩϯάΛ༻͍ͨ஌֮Τϯτϩϐʔͷߟ͑ํʹ͍ͭͯͷݪ࿦จ ▶ [7]ɿϚεΩϯάۂઢͷϞσϧԽͱͦΕΛ༻͍ͨԻ੠ූ߸Խͷݪ࿦จ 2 / 42

Slide 74

Slide 74 text

ࢀߟจݙ I [1] ౻ݪ༸. ը૾&Ի੠ѹॖٕज़ͷ͢΂ͯ : Πϯλʔωοτ/σΟδλϧςϨϏ/ϞόΠϧ௨ ৴࣌୅ͷඞਢٕज़. ୈ 6 ൛. Tech I. CQ ग़൛ࣾ, 2001. [2] وՈਔࢤ. ϚϧνϨʔτ৴߸ॲཧ. σΟδλϧ৴߸ॲཧγϦʔζ. তߊಊ, 1995. [3] P. P. Vaidyanathan et al. ϚϧνϨʔτ৴߸ॲཧͱϑΟϧλόϯΫ. σΟδλϧ৴߸ॲ ཧɾը૾ॲཧγϦʔζ. Պֶٕज़ग़൛, 2002. [4] John Princen and Alan Bradley. “Analysis/synthesis filter bank design based on time domain aliasing cancellation”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing 34.5 (1986), pp. 1153–1161. [5] Bernd Edler. “Aliasing reduction in sub-bands of cascaded filter banks with decimation”. In: Electronics Letters 12.28 (1992), pp. 1104–1106. [6] Rassol Raissi. “The theory behind MP3”. In: MP3’ Tech (2002). [7] Manfred R Schroeder, Bishnu S Atal, and JL Hall. “Optimizing digital speech coders by exploiting masking properties of the human ear”. In: The Journal of the Acoustical Society of America 66.6 (1979), pp. 1647–1652. [8] ҆ాߒ. MPEG/ϚϧνϝσΟΞූ߸Խͷࠃࡍඪ४. ؙળ, 1994. 3 / 42

Slide 75

Slide 75 text

ࢀߟจݙ II [9] وՈਔࢤ and ଜদਖ਼ޗ. ϚϧνϝσΟΞٕज़ͷجૅ DCT(཭ࢄίαΠϯม׵) ೖ໳ : JPEG/MPEG ͔Β΢ΣʔϒϨοτ, ॏෳ௚ަม׵ (LOT) ·Ͱ. I/F essence. CQ ग़൛, 1997. [10] খਿಞ࢙. Interface Aug.2001 ୈ 1 ճԻڹѹॖٕज़ͷجૅ MP3 ͱ౳ՁతͳγεςϜͷ ߏஙͱαϒόϯυϑΟϧλόϯΫͷઃܭ. CQ ग़൛ࣾ, 2001. [11] খਿಞ࢙ and ৓Լ૱. Interface Sep.2001 ୈ 2 ճԻڹѹॖٕज़ͷجૅ MP3 ͱ౳Ձతͳ γεςϜͷߏஙͱ MDCT ͷઃܭ. CQ ग़൛ࣾ, 2001. [12] খਿಞ࢙ and ৓Լ૱. Interface Nov.2001 ୈ 3 ճԻڹѹॖٕज़ͷجૅ MP3 ͱ౳Ձతͳ γεςϜͷߏஙͱϋΠϒϦουϑΟϧλόϯΫͷઃܭ. CQ ग़൛ࣾ, 2001. [13] খਿಞ࢙ and ৓Լ૱. Interface Jan.2002 ୈ 4 ճԻڹѹॖٕज़ͷجૅ MP3 ͱ౳Ձతͳ γεςϜͷߏஙͱඇઢܗྔࢠԽث/ූ߸Խثͷઃܭ. CQ ग़൛ࣾ, 2002. [14] খਿಞ࢙ and ৓Լ૱. Interface Feb.2002 ୈ 4 ճԻڹѹॖٕज़ͷجૅ MP3 ͱ౳Ձతͳ γεςϜͷߏஙͱƂͦͷͨΊͷϏοτετϦʔϜͷઃܭ. CQ ग़൛ࣾ, 2002. [15] Ӝాහಓ. ৄࡉ MP3 ϚχϡΞϧ. ΤϜݚ, 1999. [16] ཥࣳ߶. MPEG Audio Layer3 ͷΤϯίʔμͷߴ଎Խॲཧʹؔ͢Δݚڀ. http://labo.nshimizu.com/thesis/master/1aepm054.pdf. [Online; accessed 28-Jul-2024]. 2002. 4 / 42

Slide 76

Slide 76 text

ࢀߟจݙ III [17] ҏ౻জଇ. ߴޮ཰Իָූ߸Խ ʕMP3 ৄղʕ. https://www.slideshare.net/akinoriito549/slides-43584939. [Online; accessed 28-Jul-2024]. 2015. [18] Chi-Min Liu and Wen-Chieh Lee. “The design of a hybrid filter bank for the psychoacoustic model in ISO/MPEG phases 1, 2 audio encoder”. In: IEEE transactions on consumer electronics 43.3 (1997), pp. 586–592. [19] James D Johnston. “Estimation of perceptual entropy using noise masking criteria”. In: Icassp-88., international conference on acoustics, speech, and signal processing. IEEE. 1988, pp. 2524–2527. 5 / 42

Slide 77

Slide 77 text

7. ࢀߟจݙ 8. ূ໌ ϑΟϧλόϯΫ MDCT ஌֮Τϯτϩϐʔಋग़ [19] 6 / 42

Slide 78

Slide 78 text

׬શ࠶ߏ੒ ஗Ԇɾఆ਺ഒΛআ͖ೖग़ྗ͕Ұக͢Δ͜ͱɿ ˆ x[n] = cx[n − n0 ], c ̸= 0 (54) ͜Ε͸ z ྖҬͰɼ ˆ X(z) = cz−n0X(z) (55) ͱͳΔ͜ͱͱ౳Ձ 7 / 42

Slide 79

Slide 79 text

ϙϦϑΣʔζදݱ Hk (z) ͷΠϯύϧεԠ౴Λ hk [n] ͱॻ͘ͱ͖ɼ Hk (z) = ∞ n=−∞ hk [n]z−n = ∞ n=−∞ M−1 l=0 hk [nM + l]z−(nM+l) = M−1 l=0 z−l ∞ n=−∞ hk [nM + l]z−nM = M−1 l=0 Ek,l (zM )z−l hk ͷʢλΠϓ IʣϙϦϑΣʔζදݱ Ek,l (z) = ∞ n=−∞ hk [nM + l]z−n (56) 8 / 42

Slide 80

Slide 80 text

ϙϦϑΣʔζදݱ Fk (z) ͷΠϯύϧεԠ౴Λ fk [n] ͱॻ͘ͱ͖ɼ Fk(z) = ∞ n=−∞ fk[n]z−n = ∞ n=−∞ M−1 l=0 fk[nM + l]z−(nM+l) = ∞ n=−∞ M−1 l′=0 fk[nM + M − 1 − l′]z−(nM+M−1−l′) = M−1 l′=0 z−(M−1−l′) ∞ n=−∞ fk[nM + M − 1 − l′]z−nM = M−1 l′=0 z−(M−1−l′)Rk,l(zM ) fk ͷʢλΠϓ IIʣϙϦϑΣʔζදݱ Rk,l (z) = ∞ n=−∞ fk [nM + M − 1 − l]z−n (57) 9 / 42

Slide 81

Slide 81 text

ϙϦϑΣʔζߦྻදݱ (56) ࣜΛ l ʹ͍ͭͯฒ΂ɼߦྻදݱ͢Δͱ     H0(z) H1(z) HM−1(z)     h(z) =     E0,0(zM ) E0,1(zM ) E0,M−1(zM ) E1,0(zM ) E1,1(zM ) E1,M−1(zM ) EM−1,0(zM ) EM−1,1(zM ) EM−1,M−1(zM )     E(z)     1 z−1 z−(M−1)     e(z) (57) ࣜ΋ಉ༷ʹͯ͠ɼҎԼͷΑ͏ʹॻ͚Δ     F0(z) F1(z) FM−1(z)     f(z) =     R0,0(zM ) R0,1(zM ) R0,M−1(zM ) R1,0(zM ) R1,1(zM ) R1,M−1(zM ) RM−1,0(zM ) RM−1,1(zM ) RM−1,M−1(zM )     T R(z)T     z−(M−1) z−(M−1)+1 1     z−(M−1)e(z−1) 10 / 42

Slide 82

Slide 82 text

ϙϦϑΣʔζߦྻදݱ ˜ e(z) = e(z−1)T ͱ͢Δͱߦྻදݱ͸ h(z) = E(z)e(z) (58) f(z)T = z−(M−1)˜ e(z)R(z) (59) ͱ·ͱΊΒΕΔɽE(z), R(z) ΛϙϦϑΣʔζߦྻͱ ͍͏ 11 / 42

Slide 83

Slide 83 text

ϙϦϑΣʔζߦྻදݱ E(z), R(z) ʹΑΓɼΞφϥΠβɾγϯηαΠβ͸ҎԼ ͷΑ͏ʹมܗͰ͖Δ 12 / 42

Slide 84

Slide 84 text

ϙϦϑΣʔζߦྻදݱ E(z), R(z) ʹΑΓɼM ෼ׂϑΟϧλόϯΫ͸ҎԼͷΑ ͏ʹදͤΔ 13 / 42

Slide 85

Slide 85 text

׬શ࠶ߏ੒M ෼ׂϑΟϧλόϯΫ R(z)E(z) = az−m0I (a ̸= 0, m0 ∈ N) (60) ͳΒ͹ɼM ෼ׂϑΟϧλόϯΫ͸׬શ࠶ߏ੒ a a∵ ֤όϯυͷ஗Ԇ͕ K ͳΒ͹ɼ ˆ X(z) = aMz−(M−1+K)X(z) R(z)E(z) = az−m0 I Λຬͨ͢ M ෼ׂϑΟϧλόϯΫ 14 / 42

Slide 86

Slide 86 text

׬શ࠶ߏ੒M ෼ׂϑΟϧλόϯΫ (60)ࣜΑΓɼR(z) = az−m0E(z)−1 ͳΒ͹׬શ࠶ߏ੒ɽ ▶ ͔͠͠ɼE(z)−1 ͷܭࢉʹ໰୊ΛሃΉɽ ୅ΘΓʹɼE(z) ͕ύϥϢχλϦ ∗9 E(z)E(z) = dI, d ̸= 0 (61) ͳΒ͹ɼ R(z) = az−m0E(z) ͱ͢ΔͱϑΟϧλόϯΫ͸׬શ࠶ߏ੒ɽ ∗9E(z) = E∗ (z−1) ͰɼԼ෇͖ͷ ∗ ͸܎਺ͷෳૉڞ໾ 15 / 42

Slide 87

Slide 87 text

ίαΠϯมௐϑΟϧλόϯΫ ࣜ (2) ΑΓɼ෼ੳ߹੒ϑΟϧλ Fk (z)Hk (z) ͸௚ઢҐ૬ ಛੑΛ΋ͭ ʢূ໌ʣ Fk(z) = ∞ n=−∞ fk[n]z−n = ∞ n=−∞ hk[L − 1 − n]z−n = ∞ n′=−∞ hk[n′]z−(L−1−n′) = z−(L−1) ∞ n′=−∞ hk[n′]zn′ = z−(L−1)Hk(z−1) Hk(z) ͷप೾਺ಛੑΛʢۃ࠲ඪͰʣHk(ω) = |Hk(ω)| exp[jψ(ω)] ͱॻ͘ͱɼ Fk(ω) = exp[−j(L − 1)ω]Hk(−ω) = exp[−j(L − 1)ω]|Hk(−ω)| exp[−jψ(ω)] = exp[−j(L − 1)ω]|Hk(ω)| exp[−jψ(ω)] ʢ∵ ࣮܎਺ FIR ͷৼ෯ಛੑ͸ۮʣ ͔ͩΒɼFk(ω)Hk(ω) = exp[−j(L − 1)ω]|Hk(ω)|2 ͱͳͬͯ௚ઢҐ૬ಛੑΛ΋ͭɽ 16 / 42

Slide 88

Slide 88 text

ίαΠϯมௐϑΟϧλόϯΫ hk [n] ͷ఻ୡؔ਺Λมܗ͢ΔɽճసҼࢠ W2M ∗10 ΑΓ cos π M k + 1 2 n − L − 1 2 + θk = 1 2 exp j π M k + 1 2 n − L − 1 2 + θk + exp −j π M k + 1 2 n − L − 1 2 + θk = 1 2 exp(jθk)W (k+ 1 2 ) L−1 2 2M W−(k+ 1 2 )n 2M + exp(−jθk)W−(k+ 1 2 ) L−1 2 2M W (k+ 1 2 )n 2M ͜ΕΛ (1) ࣜʹ୅ೖ͢Δͱɼ Hk(z) = exp(jθk)W (k+ 1 2 ) L−1 2 2M ∞ n=−∞ p0[n]W−(k+ 1 2 )n 2M z−n + exp(−jθk)W−(k+ 1 2 ) L−1 2 2M ∞ n=−∞ p0[n]W (k+ 1 2 )n 2M z−n = exp(jθk)W (k+ 1 2 ) L−1 2 2M P0 Wk+ 1 2 2M z + exp(−jθk)W−(k+ 1 2 ) L−1 2 2M P0 W−(k+ 1 2 ) 2M z ∗10W2M = exp −j 2π 2M = exp −j π M 17 / 42

Slide 89

Slide 89 text

ίαΠϯมௐϑΟϧλόϯΫ ͞Βʹ (69) ࣜΛ୅ೖ͢Δͱ ∗11 Hk(z) = exp(jθk)W (k+ 1 2 ) L−1 2 2M 2M−1 l=0 Wk+ 1 2 2M z −l Gl Wk+ 1 2 2M z 2M + exp(−jθk)W−(k+ 1 2 ) L−1 2 2M 2M−1 l=0 W−(k+ 1 2 ) 2M z −l Gl W−(k+ 1 2 ) 2M z 2M = exp(jθk)W (k+ 1 2 ) L−1 2 2M 2M−1 l=0 W−l(k+ 1 2 ) 2M z−lGl(−z2M ) + exp(−jθk)W−(k+ 1 2 ) L−1 2 2M 2M−1 l=0 Wl(k+ 1 2 ) 2M z−lGl(−z2M ) = 2M−1 l=0 exp(jθk)W (k+ 1 2 ) L−1 2 2M W−l(k+ 1 2 ) 2M + exp(−jθk)W−(k+ 1 2 ) L−1 2 2M Wl(k+ 1 2 ) 2M z−lGl(−z2M ) = 2M−1 l=0 2 cos π M k + 1 2 l − L − 1 2 + θk z−lGl(−z2M ) ∗11 W±(k+ 1 2 ) 2M 2M = exp ∓j π M k + 1 2 2M = exp[∓jπ(2k + 1)] = −1 Λ ࢖༻ 18 / 42

Slide 90

Slide 90 text

ίαΠϯมௐϑΟϧλόϯΫ ͞Βʹมܗ͢Δͱ Hk (z) = M−1 l=0 z−l tk,l Gl (−z2M ) + z−M tk,M+l GM+l (−z2M ) (62) tk,l := 2 cos π M k + 1 2 l − L − 1 2 + θk (56) ࣜͱ (62) ࣜΛݟൺ΂Δͱɼ Ek,l (z) = tk,l Gl (−z2) + z−1tk,M+l GM+l (−z2) (63) 19 / 42

Slide 91

Slide 91 text

ίαΠϯมௐϑΟϧλόϯΫ (63) ࣜΑΓɼΞφϥΠβͷϙϦϑΣʔζߦྻ͸ɼ E(z) =     t0,0 t0,2M−1 t1,0 t1,2M−1 tM−1,0 tM−1,2M−1     T         G0 (−z2) GM−1 (−z2) z−1GM (−z2) z−1G2M−1 (−z2)         = T G0 (z2) z−1G1 (z2) (64) Gi (z) := diag GMi (−z) GMi+1 (−z) GMi+M−1 (−z) (65) ͱॻ͚Δ 20 / 42

Slide 92

Slide 92 text

ίαΠϯมௐϑΟϧλόϯΫ γϯηαΠβΛߏ੒͢ΔɽϑΟϧλ܎਺͸࣮͔ͩΒɼ E(z) = E∗ (z−1)T = G0 (z−1) zG1 (z−1) T T (66) Gl (z) ͷ࣍਺͸ 2K − 1 ͰɼҼՌੑͷͨΊʹ͸ 2K − 1 ͷ஗Ԇ͕͍ΔͨΊ R(z) = z−(2K−1)E(z) = z−(2K−1) G0 (z−1) zG1 (z−1) T T (67) 21 / 42

Slide 93

Slide 93 text

ίαΠϯมௐϑΟϧλόϯΫ ΞφϥΠβͷߏ੒ 22 / 42

Slide 94

Slide 94 text

ίαΠϯมௐϑΟϧλόϯΫ γϯηαΠβͷߏ੒ 23 / 42

Slide 95

Slide 95 text

ίαΠϯมௐϑΟϧλόϯΫ ׬શ࠶ߏ੒৚݅Λಋ͘ɽ(64)ɼ(67) ࣜΑΓɼ R(z)E(z) = z−(2K−1)E(z)E(z) = z−(2K−1) G0 (z−1) zG1 (z−1) T TT G0 (z) z−1G1 (z) = 2Mz−(2K−1) G0 (z−1)G0 (z) + G1 (z−1)G1 (z) ͜͜ͰɼT TT = 2MIʢޙͰࣔ͢ʣ ɽG0 , G1 ͸ର֯ߦ ྻ͔ͩΒɼk = 0, ..., M − 1 ʹର͠ɼ Gk (z−1)Gk (z) + GM+k (z−1)GM+k (z) = α Λຬͨͤ͹׬શ࠶ߏ੒ͱͳΔ 24 / 42

Slide 96

Slide 96 text

ίαΠϯมௐϑΟϧλόϯΫ ίαΠϯมௐϑΟϧλόϯΫͷ׬શ࠶ߏ੒৚݅ k = 0, ..., M − 1 ʹର͠ɼఆ਺ α ∈ R ͕͋ͬͯ Gk (z−1)Gk (z) + GM+k (z−1)GM+k (z) = α (68) ͱͳΔ͜ͱɽ͜͜Ͱɼ Gk (z) = ∞ n=−∞ p0 [2Mn + k]z−n (69) Gk (z) ͸ p0 [n] ͷϙϦϑΣʔζදݱ ຊ৚݅͸ిྗ૬ิ৚݅ͱ΋͍͏ 25 / 42

Slide 97

Slide 97 text

T TT = 2MI ͷূ໌ T TT ij = M−1 k=0 tk,i tk,j Ͱ͋Γɼ tk,itk,j = 4 cos π M k + 1 2 i − L − 1 2 + (−1)k π 4 cos π M k + 1 2 j − L − 1 2 + (−1)k π 4 = 2 cos π M k + 1 2 {i + j − (L − 1)} + (−1)k π 2 + cos π M k + 1 2 (i − j) i + j − (L − 1) = A ͱ͓͘ͱɼ cos π M k + 1 2 A + (−1)k π 2 = cos π M k + 1 2 A cos (−1)k π 2 − sin π M k + 1 2 A sin (−1)k π 2 = −(−1)k sin π M k + 1 2 A 26 / 42

Slide 98

Slide 98 text

T TT = 2MI ͷূ໌ ͜͜Ͱɼ M−1 k=0 cos π M k + 1 2 (i − j) = Mδij (70) M−1 k=0 (−1)k sin π M k + 1 2 A = 0 (71) ʢδij ɿΫϩωοΧʔͷσϧλʣΛࣔͤ͹ɼ T TT ij = 2Mδij ͱͳΓ໋୊͕ࣔͤΔɽ࣍ϖʔδ͔Βܭࢉ݁ՌΛࡌͤΔ 27 / 42

Slide 99

Slide 99 text

T TT = 2MI ͷূ໌ (70) ࣜΛࣔ͢ɽi = j ͷͱ͖ɼ M−1 k=0 cos π M k + 1 2 (i − j) = Mɽ i ̸= j ͷͱ͖ɼ M−1 k=0 cos π M k + 1 2 (i − j) = 1 2 M−1 k=0 exp j π M k + 1 2 (i − j) + exp −j π M k + 1 2 (i − j) = 1 2 M−1 k=0 W−(k+ 1 2 )(i−j) 2M + W (k+ 1 2 )(i−j) 2M = 1 2 W− i−j 2 2M M−1 k=0 W−(i−j)k 2M + W i−j 2 2M M−1 k=0 W(i−j)k 2M = 1 2   W− i−j 2 2M W−(i−j) 2M − 1 (−1)−(i−j) − 1 + W i−j 2 2M Wi−j 2M − 1 (−1)i−j − 1   ࠷ޙͷࣜมܗͰ౳ൺڃ਺ͷ࿨ M−1 k=0 W(i−j)k 2M = W (i−j)M 2M −1 W i−j 2M −1 = (−1)i−j −1 W i−j 2M −1 Λ࢖༻ 28 / 42

Slide 100

Slide 100 text

T TT = 2MI ͷূ໌ ͞Βʹࣜมܗ͢Δͱɼ M−1 k=0 cos π M k + 1 2 (i − j) = 1 2   W− i−j 2 2M W−(i−j) 2M − 1 (−1)−(i−j) − 1 + W i−j 2 2M Wi−j 2M − 1 (−1)i−j − 1   = W− i−j 2 2M (Wi−j 2M − 1) (−1)−(i−j) − 1 + W i−j 2 2M (W−(i−j) 2M − 1) (−1)i−j − 1 2(W−(i−j) 2M − 1)(Wi−j 2M − 1) = (W i−j 2 2M − W− i−j 2 2M ) (−1)−(i−j) − 1 + (W− i−j 2 2M − W i−j 2 2M ) (−1)i−j − 1 2(W−(i−j) 2M − 1)(Wi−j 2M − 1) = (W i−j 2 2M − W− i−j 2 2M ) (−1)i−j − 1 + (W− i−j 2 2M − W i−j 2 2M ) (−1)i−j − 1 2(W−(i−j) 2M − 1)(Wi−j 2M − 1) = 0 Αͬͯ (70) ͕ࣜࣔ͞Εͨ 29 / 42

Slide 101

Slide 101 text

T TT = 2MI ͷূ໌ (71) ࣜΛࣔ͢ɽ M−1 k=0 (−1)k sin π M k + 1 2 A = 1 j2 M−1 k=0 (−1)k exp j π M k + 1 2 A − exp −j π M k + 1 2 A = 1 j2 M−1 k=0 (−1)k W−A(k+ 1 2 ) 2M − WA(k+ 1 2 ) 2M = 1 j2 W− A 2 2M M−1 k=0 (−1)kW−Ak 2M − W A 2 2M M−1 k=0 (−1)kWAk 2M = 1 j2 W− A 2 2M M−1 k=0 W−(M+A)k 2M − W A 2 2M M−1 k=0 W(M+A)k 2M ʢ∵ (−1)k = WM 2M = W−M 2M ʣ = 1 j2 W− A 2 2M (−1)−(M+A) − 1 W−(M+A) 2M − 1 − W A 2 2M (−1)M+A − 1 WM+A 2M − 1 ʢ∵ ౳ൺڃ਺ͷ࿨ͷެࣜʣ 30 / 42

Slide 102

Slide 102 text

T TT = 2MI ͷূ໌ ͞ΒʹܭࢉΛਐΊΔͱɼ M−1 k=0 (−1)k sin π M k + 1 2 A = W− A 2 2M (−1)−(M+A) − 1 (WM+A 2M − 1) − W A 2 2M (−1)M+A − 1 (W−(M+A) 2M − 1) j2(W−(M+A) 2M − 1)(W(M+A) 2M − 1) = (−1)M+A − 1 W− A 2 2M (WM+A 2M − 1) − W A 2 2M (W−(M+A) 2M − 1) j2(W−(M+A) 2M − 1)(W(M+A) 2M − 1) = (−1)M+A − 1 WM+ A 2 2M − W− A 2 2M − W−M− A 2 2M + W A 2 2M j2(W−(M+A) 2M − 1)(W(M+A) 2M − 1) = (−1)M+A − 1 −W A 2 2M − W− A 2 2M + W− A 2 2M + W A 2 2M j2(W−(M+A) 2M − 1)(W(M+A) 2M − 1) = 0 Αͬͯɼ(71) ͕ࣜࣔ͞Εͨɽ 31 / 42

Slide 103

Slide 103 text

MP3ͷϑΟϧλόϯΫͷಛੑ 0 100 200 300 400 500 index 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 amplitude MP3 Decoder prototype filter coefficients ▶ σίʔμͷ܎਺ɽΤϯίʔμͷ܎਺ͷ 32 ഒ 32 / 42

Slide 104

Slide 104 text

ిྗ૬ิ৚݅ͷ֬ೝ MP3 ͷϑΟϧλόϯΫͰ͸ Gk(z) = ∞ n=−∞ p0[2nM + k]z−n = 7 n=0 p0[64n + k]z−n = 7 n=0 (−1)nC64+kz−n GM+k(z) = 7 n=0 p0[64n + 32 + k]z−n = 7 n=0 (−1)nC64n+32+kz−n Gk(z−1) = ∞ n=−∞ p0[64n + k](z−1)−n = ∞ n=−∞ p0[−64n + k]z−n = 0 n=−7 (−1)nC−64n+kz−n GM+k(z−1) = 7 n=0 p0[−64n + 32 + k]z−n = 7 n=0 (−1)nC−64n+32+kz−n k = 0, ..., 31 Ͱ࣮ࡍʹܭࢉ͢Δͱɼ Gk (z−1)Gk (z) + GM+k (z−1)GM+k (z) ≈ 1 512 33 / 42

Slide 105

Slide 105 text

ిྗ૬ิ৚݅ͷ֬ೝʢܭࢉ݁Ռʣ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 normalized frequency 0.00000 0.00025 0.00050 0.00075 0.00100 0.00125 0.00150 0.00175 0.00200 amplitude Real part Imaginary part MP3 prototype filter power complementary condition check ”΄΅”׬શ࠶ߏ੒ͱݴͬͯΑ͍ 34 / 42

Slide 106

Slide 106 text

MDCTɾIMDCTʹΑΔ࠶ߏ੒৴߸ ࣜ (10) ʹࣜ (9) Λ୅ೖ͢Δͱɼ y[n] = 2 N N−1 k=0 2N−1 m=0 x[m] cos π N k + 1 2 m + 1 2 + N 2 cos π N k + 1 2 n + 1 2 + N 2 = 1 N N−1 k=0 2N−1 m=0 x[m] cos π N k + 1 2 (n + m + 1 + N) + cos π N k + 1 2 (n − m) = 1 N 2N−1 m=0 x[m] N−1 k=0 cos π N k + 1 2 (n + m + 1 + N) + cos π N k + 1 2 (n − m) ͜͜Ͱɼ In := N−1 k=0 cos π N k + 1 2 n (72) Λܭࢉ͍ͯ͘͠ 35 / 42

Slide 107

Slide 107 text

MDCTɾIMDCTʹΑΔ࠶ߏ੒৴߸ In = N−1 k=0 cos π N k + 1 2 n = N−1 k=0 cos π 2N (2k + 1)n = 1 2 N−1 k=0 exp j π 2N (2k + 1)n + exp −j π 2N (2k + 1)n = 1 2 N−1 k=0 W− 2k+1 2 n 2N + W 2k+1 2 n 2N = 1 2 W− n 2 2N N−1 k=0 W−nk 2N + W n 2 2N N−1 k=0 Wnk 2N ͜͜Ͱɼ N−1 k=0 Wnk 2N = N−1 k=0 (Wn 2N )k =            N−1 k=0 1k = N ʢn ͕ 2N ͷഒ਺ʣ 1 Wn 2N N − 1 Wn 2N − 1 = (−1)n − 1 Wn 2N − 1 ʢn ͕ 2N ͷഒ਺Ͱ͸ͳ͍ʣ ͔Βɼ৔߹෼͚ͯ͠ߟ͑Δ 36 / 42

Slide 108

Slide 108 text

MDCTɾIMDCTʹΑΔ࠶ߏ੒৴߸ n ͕ 2N ͷഒ਺ͷͱ͖ɼn = 2Nm (m ∈ Z) ͱॻ͚ͯɼ In = N 2 W−2Nm 2N + W2Nm 2N = N 2 (−1)−m + (−1)m = N ʢmɿۮ਺ ⇐⇒ n = 0, ±4N, ±8Nʣ −N ʢmɿح਺ ⇐⇒ n = ±2N, ±6N, ±10Nʣ n ͕ 2N ͷഒ਺Ͱ͸ͳ͍ͱ͖ɼ In = 1 2 W− n 2 2N (−1)−n − 1 W−n 2N − 1 + W n 2 2N (−1)n − 1 Wn 2N − 1 = W− n 2 2N (−1)−n − 1 (Wn 2N − 1) + W n 2 2N {(−1)n − 1} (W−n 2N − 1) 2(W−l 2N − 1)(Wn 2N − 1) = W− n 2 2N (−1)−nWn 2N − (−1)−n − Wn 2N + 1 + W n 2 2N (−1)nW−n 2N − (−1)n − W−n 2N + 1 2(W−l 2N − 1)(Wn 2N − 1) = (−1)−nW n 2 2N − (−1)−nW− n 2 2N − W n 2 2N + W− n 2 2N + (−1)nW− n 2 2N − (−1)nW n 2 2N − W− n 2 2N + W n 2 2N 2(W−l 2N − 1)(Wn 2N − 1) = 0 37 / 42

Slide 109

Slide 109 text

MDCTɾIMDCTʹΑΔ࠶ߏ੒৴߸ ·ͱΊΔͱɼ In =    N (n = 0, ±4N, ±8N, ...) −N (n = ±2N, ±6N, ±10N, ...) 0 (otherwise) (73) ͱͳΔɽࣜ (73) Λ࢖͑͹ɼ 2N−1 m=0 x[m]Im−n = x[n]I0 = Nx[n] (n = 0, ..., N − 1) x[n]I0 = Nx[n] (n = N, ..., 2N − 1) 2N−1 m=0 x[m]In+m+1+N = x[N − 1 − n]I2N = −Nx[N − 1 − n] (n = 0, ..., N − 1) x[3N − 1 − n]I4N = Nx[3N − 1 − n] (n = N, ..., 2N − 1) ͔ͩΒɼ y[n] = 1 N 2N−1 m=0 x[m](In+m+1+N + Im−n) = x[n] − x[N − 1 − n] (n = 0, ..., N − 1) x[n] + x[3N − 1 − n] (n = 0, ..., N − 1) ͱͳΔɽ 38 / 42

Slide 110

Slide 110 text

஌֮Τϯτϩϐʔಋग़ ௌ͖͍֮͠஋ Tb ʹྔࢠԽ෼ࢄʢύϫʔʣΛ߹ΘͤΔ ▶ ֤प೾਺ϏϯΛྔࢠԽεςοϓ෯ ∆b ͰҰ༷ྔࢠ Խ ⇒ ྔࢠԽޡ͕ࠩҰ༷ʹੜى͢ΔͳΒɼྔࢠԽ ޡࠩ෼ࢄ͸Ϗϯ͋ͨΓ ∆2 b 12 ▶ ύʔςΟγϣϯ b ʹؚ·ΕΔϏϯ਺Λ nb ͱ͢Δ ͱɼϏϯ͋ͨΓͷௌ͖͍֮͠஋͸ Tb nb ͜ΕΒΛ౳͍͠ͱ͢Δͱɼ Tb nb = ∆2 b 12 =⇒ ∆b = 12Tb nb (74) 39 / 42

Slide 111

Slide 111 text

஌֮Τϯτϩϐʔಋग़ εϖΫτϧͷූ߸ԽʹඞཁͳϏοτ਺Λಋग़ ▶ Ϗϯ͋ͨΓͷฏۉৼ෯εϖΫτϧ͸ Ib /nb ▶ εϖΫτϧ͸ [−⌈ Ib /nb ⌉, ⌈ Ib /nb ⌉] ͷൣғ ⇒ ූ߸Խൣғͷ෯͸ 2 Ib /nb ൣғΛεςοϓ෯ ∆b ͰׂΔͱූ߸ԽγϯϘϧݸ਺ʹ ͳΔɽ࣮ڏ྆࣠Ͱූ߸ԽʹඞཁͳϏοτ਺͸ log2 2 Ib /nb ∆b + log2 2 Ib /nb ∆b = 2 log2 2 Ib /nb ∆b (75) 40 / 42

Slide 112

Slide 112 text

஌֮Τϯτϩϐʔಋग़ (75) ࣜΛมܗ 2 log2 2 Ib /nb ∆b = log2 4Ib nb ∆2 b = log2 Ib 3Tb ∝ log Ib 3Tb = log Ib Tb + const. શप೾਺Ϗϯͷූ߸ԽʹඞཁͳϏοτ਺͸ b nb log Ib Tb + const. (76) ʹൺྫ 41 / 42

Slide 113

Slide 113 text

஌֮Τϯτϩϐʔಋग़ ن֨Ͱ͸஌֮Τϯτϩϐʔ PE Λ PE = b nn log Ib + 1 Tb (77) Ͱఆٛɽdist10 Ͱ͸ແԻྖҬͰ Tb = 0 ͱͳΔͨΊɼ PE = b nn log Ib + 1 Tb + 1 (78) Ͱܭࢉ ∗12 ∗12༗Ի۠ؒͰ Ib , Tb ͸େ͖͍ͷͰɼۙࣅͱͯ͠͸໰୊ͳ͍૝ఆ 42 / 42