Slide 27
Slide 27 text
Offline k-submodular maximization
[Iwata, Tanigawa, and Yoshida 6]
: x( ) :=
: for j = , ... , n :
: Compute a probability distribution p(j) ∈ ∆k
: sample i ∼ p(j) and x(j) ← x(j− ) + iej
: return x = x(n)
Lemma ([Iwata, Tanigawa, and Yoshida 6])
Assume that for j = , ... , n, p(j) satisfies
max
i∗∈[k]
a(i∗) − E
i∼p(j)
[b(i) + a(i)] ≤
for ∀a ≤ b, a(i) + a(i ) ≥ (i ≠ i ), where b(i) = ∆j,if(x(j− )) (∀i).
Then x is / -approx. Such p(j) can be found via only b.
/ 6