Slide 23
Slide 23 text
.
.
.
.
.
.
.
.
.
.
Intro
.
.
.
.
.
.
.
.
.
.
BNNs are not robust to covariate shift
.
.
.
.
.
.
.
.
.
.
.
.
Understanding BNNs under covariate shift
.
.
.
.
.
.
Towards more robust BMA
.
.
.
.
Discussion References
References I
Vincent Fortuin. Priors in bayesian deep learning: A review. International Statistical
Review, 2022.
Pavel Izmailov, Patrick Nicholson, Sanae Lotfi, and Andrew G Wilson. Dangers of
bayesian model averaging under covariate shift. Advances in Neural Information
Processing Systems, 34:3309–3322, 2021a.
Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon
Wilson. What are bayesian neural network posteriors really like? In International
conference on machine learning, pages 4629–4640. PMLR, 2021b.
Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for
advanced research). 2014. URL http://www.cs.toronto.edu/~kriz/cifar.html.
Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL
http://yann.lecun.com/exdb/mnist/.
Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.
23/23