Slide 1

Slide 1 text

K A N O U I V I R A C H W H AT I S D ATA E N G I N E E R I N G ?

Slide 2

Slide 2 text

Kan Ouivirach Lead Software Architect

Slide 3

Slide 3 text

Photo by Frank Vex on Unsplash Companies use DATA to answer these business questions: • What is our churn rate? • Are we doing better? How can we improve our services? • Any recommendation to generate more revenue from repeated customers?

Slide 4

Slide 4 text

J O I N T H E C L U B . .

Slide 5

Slide 5 text

M A K I N G D ATA S C I E N C E B E T T E R

Slide 6

Slide 6 text

M A K I N G D ATA S C I E N C E B E T T E R

Slide 7

Slide 7 text

M A K I N G D ATA S C I E N C E B E T T E R Data Engineering helps make the world/organization a better place with “Open Data”.

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

https://medium.freecodecamp.com/the-rise-of-the-data-engineer-91be18f1e603 T H E R I S E O F T H E D ATA E N G I N E E R

Slide 10

Slide 10 text

Use programming languages to ensure clean, reliable, and performative access to data and databases D ATA E N G I N E E R https://medium.freecodecamp.com/the-rise-of-the-data-engineer-91be18f1e603 The Rise of the Data Engineer

Slide 11

Slide 11 text

https://www.oreilly.com/ideas/data-engineers-vs-data-scientists

Slide 12

Slide 12 text

D ATA E N G I N E E R V S . D ATA S C I E N T I S T https://www.datacamp.com/community/blog/data-scientist-vs-data-engineer

Slide 13

Slide 13 text

D ATA E N G I N E E R V S . D ATA S C I E N T I S T Updated Feb 25, 2019

Slide 14

Slide 14 text

H O W M U C H D O E S A D ATA E N G I N E E R / S C I E N T I S T M A K E ? https://www.glassdoor.com/Salaries/index.htm

Slide 15

Slide 15 text

H O W M U C H D O E S A S E N I O R D ATA E N G I N E E R / S C I E N T I S T M A K E ? https://www.glassdoor.com/Salaries/index.htm

Slide 16

Slide 16 text

“In Data Engineering, if an expensive data scientist can’t work, it is an emergency.” https://blog.datasyndrome.com/rules-for-crash-course-data-engineering-d19bed5f277

Slide 17

Slide 17 text

• Sanitize while processing data • Decouple components • Access data at multiple stages • Promote transparency • Automate! http://prismalytics.io/datapipeline/ Data Pipeline

Slide 18

Slide 18 text

Data scientists doing data engineering?

Slide 19

Slide 19 text

http://mattturck.com/bigdata2018/

Slide 20

Slide 20 text

Data engineers doing data science?

Slide 21

Slide 21 text

https://analyticks.wordpress.com/2016/12/23/machine-learning-cheat-sheet-2/

Slide 22

Slide 22 text

Data Engineers Data Scientists Photo by rawpixel on Unsplash