Slide 14
Slide 14 text
Generators
Definition
Let G be a finite group. The set generated by g1, g2, . . . , gn ∈ G is the subset of
elements in G that we can construct using only g1, g2, . . . , gn
. We denote this set via
⟨g1, g2, . . . , gn⟩.
Example
Consider Z6
. Then
• ⟨0⟩ = {0}
• ⟨2⟩ = {2, 4, 0}
• ⟨2, 4⟩ = {2, 4, 0}
• ⟨3⟩ = {3, 0}
• ⟨2, 3⟩ = {2, 4, 0, 3, 5, 1} = Z6
• ⟨1⟩ = {1, 2, 3, 4, 5, 0} = Z6
Consider D4
. Then
• ⟨e⟩ = {e}
• ⟨f ⟩ = {f , e}
• ⟨r⟩ = {r, r2, r3, e}
• ⟨r2⟩ = {r2, e}
• ⟨r, f ⟩ = {r, r2, r3, e, f , fr, rf , r2f } = D4
• ⟨f , fr⟩ = {f , e, fr, r, r2, r3, rf , r2f } = D4
D.C. Ernst Impartial games for generating groups 14 / 21