@lcolladotor
lcolladotor.github.io
lcolladotor.github.io/bioc_team_ds
An Introduction to spatialLIBD:
an R/Bioconductor package to visualize
spatially-resolved transcriptomics data
Leonardo Collado Torres, LIBD Investigator + Asst. Prof. Johns Hopkins Biostatistics
Festival of Genomics & Biodata
June 13 2024
Slides available at speakerdeck.com/lcolladotor
Slide 2
Slide 2 text
doi.org/10.1016/j.biopsych.2020.06.005
Michael Gandal
@mikejg84
Transcriptomic
Insight Into the
Polygenic
Mechanisms
Underlying
Psychiatric
Disorders
Slide 3
Slide 3 text
Background: Human DLPFC
3
slideshare.net
Louise A Huuki-Myers
@lahuuki
Slide 4
Slide 4 text
Zoom in: spatial omics
Kristen R Maynard
@kr_maynard
Keri Martinowich
@martinowk
Stephanie C Hicks
@stephaniehicks
Andrew E Jaffe
@andrewejaffe
Stephanie C Page
@CerceoPage
Slide 5
Slide 5 text
Visium Platform for Spatial Gene Expression
Image from 10x Genomics
- A slide contains 4 capture areas, each full of thousands of 55um-wide “spots”
(often containing 1-10 cells)
- Unique barcodes in each spot bind to particular genes; after sequencing, gene
expression can be tied back to exact spots, forming a spatial map
Kristen R. Maynard
5
Slide 6
Slide 6 text
bioconductor.org/packages/spatialLIBD
Pardo et al, 2022 DOI 10.1186/s12864-022-08601-w
Maynard, Collado-Torres, 2021 DOI 10.1038/s41593-020-00787-0
Brenda Pardo Abby Spangler
@PardoBree @abspangler
Louise A. Huuki-Myers
@lahuuki
“Pseudo-bulking” collapses data: spot to layer level
8
Maynard, Collado-Torres, et al, Nat Neuro, 2021
Slide 9
Slide 9 text
DOI: 10.1038/s41593-020-00787-0
twitter.com/lcolladotor/status/1233661576433061888 from 2020-02-29
Andrew E Jaffe
@andrewejaffe
Kristen R Maynard
@kr_maynard
Keri Martinowich
@martinowk
Slide 10
Slide 10 text
DOI: 10.1038/s41593-020-00787-0
twitter.com/lcolladotor/status/1233661576433061888 from 2020-02-29
DOI 10.1093/bioinformatics/btac299
Since Feb 2020
spatialLIBD::fetch_data()
provides access to
SpatialExperiment
R/Bioconductor objects
Stephanie C Hicks
@stephaniehicks
Lukas M Weber
@lmweber
Slide 11
Slide 11 text
DOI: 10.1038/s41593-020-00787-0
twitter.com/lcolladotor/status/1233661576433061888 from 2020-02-29
twitter.com/CrowellHL/status/1597579271945715717
DOI 10.1093/bioinformatics/btac299
Since Feb 2020
spatialLIBD::fetch_data()
provides access to
SpatialExperiment
R/Bioconductor objects
Slide 12
Slide 12 text
Pseudobulk to find DE genes
DOI: 10.1038/s41593-020-00787-0
Slide 13
Slide 13 text
Single cell analysis workflow
bioconductor.org/books/release/OSCA
Solid foundational base for getting
started with the world of spatial
transcriptomics (with Visium)
Slide 14
Slide 14 text
Some challenges ⚠ with
Visium
14
Slide 15
Slide 15 text
Some analysis differences
● 10x Genomics CellRanger → SpaceRanger (or other tools)
● DropletUtils::read10xVisium() → spatialLIBD::read10xVisiumWrapper()
● Spot QC
○ Drop high mitochondria % spots?
○ Drop spots with low UMI counts?
■ Biological vs technical reasons
● Spot clustering (spatially-aware) and/or manual annotation
● Choosing a spot clustering resolution
○ Can be guided by spatially cluster registration
Slide 16
Slide 16 text
Some analysis differences
● 10x Genomics CellRanger → SpaceRanger (or other tools)
Slide 17
Slide 17 text
Align your data with spaceranger --count
17
www.10xgenomics.com/support/software/space-ranger/latest
spatialLIBD::run_app()
23
libd.shinyapps.io/Habenula_Visium_raw/
Default
non-spatially
aware graph
based
clustering
results
+ K-means
(k = 2 to 10)
Slide 24
Slide 24 text
Some analysis differences
● 10x Genomics CellRanger → SpaceRanger (or other tools)
● DropletUtils::read10xVisium() → spatialLIBD::read10xVisiumWrapper()
● Spot QC
○ Drop high mitochondria % spots?
○ Drop spots with low UMI counts?
Slide 25
Slide 25 text
sc/snRNA-seq QC metrics such as # detected genes, # UMI,
mitochondria expression % are likely biologically related!
Slide 26
Slide 26 text
Some analysis differences
● 10x Genomics CellRanger → SpaceRanger (or other tools)
● DropletUtils::read10xVisium() → spatialLIBD::read10xVisiumWrapper()
● Spot QC
○ Drop high mitochondria % spots?
○ Drop spots with low UMI counts?
■ Biological vs technical reasons
Slide 27
Slide 27 text
isOutlier(sce.416b$sum, log=TRUE, type="lower")
drive.google.com/drive/folders/1cn5d-Ey7-kkMiex8-74qxvxtCQT6o72h
Slide by Peter
Hickey
Slide 28
Slide 28 text
doi.org/10.1089/genbio.2023.0019 Fig S9
Low library size (UMIs,
# detected genes):
● Biological:
○ Not all cells /
layers are
equally active
● Technical:
○ Edge of
tissue: should
have been
called “out of
tissue”
○ Truly low
quality
Slide 29
Slide 29 text
Prashanthi Ravichandran
@prashanthi-ravichandran (GH)
Artifacts in general are normalized away by library size, though
there are caveats doi.org/10.1126/science.adh1938
Slide 30
Slide 30 text
Diffusion issues: could be related to
permeabilization step
doi.org/10.1126/science.adh1938
Slide 31
Slide 31 text
Having more data is useful to provide context!
Here 4 new samples have low sequencing saturation (outliers) but
are within range of good samples from other studies
Slide 32
Slide 32 text
Having more data is useful to provide context!
Those 4 samples have great median UMI counts per spot ^_^
Slide 33
Slide 33 text
Software keeps evolving and as leaders in the field we aim to
use the best methods
33
Moses, L., Pachter, L. Museum of spatial transcriptomics. Nat Methods 19,
534–546 (2022). https://doi.org/10.1038/s41592-022-01409-2
Slide 34
Slide 34 text
Some analysis differences
● 10x Genomics CellRanger → SpaceRanger (or other tools)
● DropletUtils::read10xVisium() → spatialLIBD::read10xVisiumWrapper()
● Spot QC
○ Drop high mitochondria % spots?
○ Drop spots with low UMI counts?
■ Biological vs technical reasons
● Spot clustering (spatially-aware) and/or manual annotation
spatialLIBD apps
● Useful for visualizing & annotating the data
● Immediately make them after running SpaceRanger
● Update them as we generate more results
● Share them with the publication of the results
● spatial.libd.org/spatialLIBD/
● research.libd.org/spatialDLPFC/#interactive-websites
● research.libd.org/Visium_SPG_AD/#interactive-websites
● …
Slide 43
Slide 43 text
43
research.libd.org/rstatsclub
LIBD rstats club videos
Slide 44
Slide 44 text
44
research.libd.org/rstatsclub
LIBD rstats club videos
Slide 45
Slide 45 text
lcolladotor.github.io/#projects
● Every assay has caveats
● We re-use tricks:
think adding 0, multiplying by 1
● It nearly always takes a team
● Data sharing accelerates science +
democratizes access to it
● Zooming in allows us to reduce the
heterogeneity
● We can learn from each other: from
uniformly processing our data & re-using
it → replicate / validate?
Slide 46
Slide 46 text
@MadhaviTippani
Madhavi Tippani
@HeenaDivecha
Heena R Divecha
@lmwebr
Lukas M Weber
@stephaniehicks
Stephanie C Hicks
@abspangler
Abby Spangler
@martinowk
Keri Martinowich
@CerceoPage
Stephanie C Page
@kr_maynard
Kristen R Maynard
@lcolladotor
Leonardo Collado-Torres
@Nick-Eagles (GH)
Nicholas J Eagles
Kelsey D Montgomery
Sang Ho Kwon
Image Analysis
Expression Analysis
Data Generation
Thomas M Hyde
@lahuuki
Louise A Huuki-Myers
@BoyiGuo
Boyi Guo
@mattntran
Matthew N Tran
@sowmyapartybun
Sowmya Parthiban
Slides available at
speakerdeck.com
/lcolladotor
+ Many more LIBD, JHU, and
external collaborators
@mgrantpeters
Melissa Grant-Peters
@prashanthi-ravichandran (GH)
Prashanthi Ravichandran