Slide 1

Slide 1 text

MLOpsはDevOpsと何が違うの? 澁井 雄介 shibui yusuke

Slide 2

Slide 2 text

自己紹介 shibui yusuke ▶ Launchable Inc. ソフトウェアエンジニア ▶ MLOpsコミュニティ運営 ▶ もともとクラウド基盤の開発、運用。 ▶ ここ6年くらいMLOpsで仕事。 ▶ Github: @shibuiwilliam ▶ 最近やってること: 本を書いてます cat : 0.55 dog: 0.45 human : 0.70 gorilla : 0.30 物体検知

Slide 3

Slide 3 text

本日の流れ ▶ DevOps and MLOps ▶ DevOps for ML

Slide 4

Slide 4 text

DevOps and MLOps

Slide 5

Slide 5 text

DevOps

Slide 6

Slide 6 text

MLOpsとは ▶ DevOps for ML or ML operations ▶ 機械学習という確率的、データ依存、発展途上、便利な技術を DevOpsに組み込む ▶ いわゆる機械学習基盤や機械学習パイプラインだけでなく、要件定義、インフ ラ、データ管理、サービング、コスト、品質、組織論まで含む 広範な概念に成長中

Slide 7

Slide 7 text

DevOps for ML??? M L ML ML M L ML M L ML M L 雑にMLを入れればMLOpsになるわけではない。 ML

Slide 8

Slide 8 text

DevOps for ML

Slide 9

Slide 9 text

機械学習を使ったプロダクト例 画像処理 写真を撮る タイトル入力 説明入力 登録する 自然言語処理 違反検知 登録情報から違反を フィルタリング 入力情報から 入力補助 超解像による 画質改善 ねこ 検索 ランク学習による 並べ替え あるコンテンツ登録アプリ 画像分類と 検索

Slide 10

Slide 10 text

違反検知を例に考える 写真を撮る タイトル入力 説明入力 登録する 違反検知 登録情報から違反を フィルタリング ねこ あるコンテンツ登録アプリ

Slide 11

Slide 11 text

違反とは 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ 公序良俗に反する画像 著作権違反の画像 グロテスクな画像 サービスに則さない画像 ・・・を違反として排除したい

Slide 12

Slide 12 text

開発の前にデータ 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ DATA 機械学習には大量のデータが必要 ● 集める ● 意味付ける ● 管理する 正常 違反 集める 意味付ける 管理する

Slide 13

Slide 13 text

実験して性能を評価する 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ DATA 実験を繰り返して性能を評価する。 必要に応じてDataやPlanに戻る。 ここでGPUや分散処理→コスト増大。 正常 違反 性能が低い データが足りない 遅い 実験 戻る

Slide 14

Slide 14 text

実験的なコード:頻繁に書き直す、 途中から実行、使い捨て 本番コード: 動かし続ける、再現性、 デバッグ 実験的なコードを清書する 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ 正常 違反 実験 DATA 動かし方がわからない・・・

Slide 15

Slide 15 text

しかしそれは始まりでしかなかった・・・ リリース・・・ 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ 正常 違反 実験 DATA

Slide 16

Slide 16 text

偽陽性と偽陰性 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ 実験 DATA 偽陽性:違反なのに正常と判定 偽陰性:正常なのに違反と判定 データの品質や網羅性が足りないと、 偽陽性や偽陰性が高くなる 正常なのに 違反と判定された 投稿者は不快 閲覧者は不快 違反なのに 正常扱い

Slide 17

Slide 17 text

ヒューマンインザループ 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ 実験 DATA 自動化が進んだ仕組みにおいて、 一部の判断に人間を介在させること。 機械学習の誤りを正すためには人間の ダブルチェックが必要。 正常 違反 違反と間違えや すい正常 正常と間違えや すい違反 人間

Slide 18

Slide 18 text

正常 違反 推測するな計測せよ 写真を撮る タイトル入力 説明入力 登録する ねこ あるコンテンツ登録アプリ 実験 DATA 機械学習の判定と実用上の価値を評価する。 評価に応じて次のActionを決める。 人間 評価 正答率: xx Precision: yy Recall: zz 違反画像閲覧数: aa クレーム数: bb コスト: cc Go: 改善Plan No Go: 停止措置

Slide 19

Slide 19 text

DevOps for ML 実験 DATA 人間 評価

Slide 20

Slide 20 text

▶ AIエンジニアのための 機械学習システムデザインパターン ▶ 2021年5月17日出版 ▶ https://www.amazon.co.jp/dp/4798169447/ ▶ 続編執筆中! ▶ 2022年11月発売予定!? ▶ 機械学習で需要予測、違反検知、検索を実 現するシステムの作り方を解説 出版しました! ?

Slide 21

Slide 21 text

参考資料 ▶ MLOps: Continuous delivery and automation pipelines in machine learning https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning ▶ Introduction to MLOps https://speakerdeck.com/asei/introduction-to-mlops ▶ Machine Learning Operations (MLOps): Overview, Definition, and Architecture https://arxiv.org/abs/2205.02302 ▶ People + AI Research https://pair.withgoogle.com/ ▶ Awesome MLOps https://github.com/visenger/awesome-mlops ▶ AIシステムが成熟する今「 MLOps」が必要とされる理由とは? MLOpsを推進するために大切なこと https://codezine.jp/article/detail/15953

Slide 22

Slide 22 text

Thank you!