Slide 1

Slide 1 text

関西大学総合情報学部 浅野 晃 応用数学(解析) 2024年度春学期 第4部・「その先の解析学」への導入 / 第12回 複素関数論ダイジェスト(1) 複素関数・正則関数

Slide 2

Slide 2 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 応用数学(解析)は 2 ここから先の”「その先の解析学」への導入”は, 「ちょっとかっこいい数学」への入口です 複素関数論ダイジェスト(2回) 測度論ダイジェスト(2回) 本来は,それぞれ半期15回をかけて学ぶ科目です🎓🎓 ここでは,「雰囲気💭💭」を説明します

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

「複素関数」で いったい何をやろうというのか🤔🤔

Slide 5

Slide 5 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 こんな積分は 4 まっとうには求められません。 ∞ −∞ 1 x4 + 1 dx 1

Slide 6

Slide 6 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 こんな積分は 4 まっとうには求められません。 そこで ∞ −∞ 1 x4 + 1 dx 1

Slide 7

Slide 7 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 こんな積分は 4 まっとうには求められません。 そこで ∞ −∞ 1 x4 + 1 dx 1 x 数直線を

Slide 8

Slide 8 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 こんな積分は 4 まっとうには求められません。 そこで ∞ −∞ 1 x4 + 1 dx 1 x 数直線を y

Slide 9

Slide 9 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 こんな積分は 4 まっとうには求められません。 そこで ∞ −∞ 1 x4 + 1 dx 1 x 数直線を y 複素平面に拡張

Slide 10

Slide 10 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 こんな積分は 4 まっとうには求められません。 そこで ∞ −∞ 1 x4 + 1 dx 1 x 数直線を 実部 y 虚部 複素平面に拡張 z = x + yi

Slide 11

Slide 11 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 こんな積分は 4 まっとうには求められません。 そこで ∞ −∞ 1 x4 + 1 dx 1 x 数直線を 実部 y 虚部 複素平面に拡張 z = x + yi こういう周C上で C

Slide 12

Slide 12 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 こんな積分は 4 まっとうには求められません。 そこで ∞ −∞ 1 x4 + 1 dx 1 x 数直線を 実部 y 虚部 複素平面に拡張 z = x + yi こういう周C上で C C 1 z4 + 1 dz     を計算すると

Slide 13

Slide 13 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 こんな積分は 4 まっとうには求められません。 そこで ∞ −∞ 1 x4 + 1 dx 1 x 数直線を 実部 y 虚部 複素平面に拡張 z = x + yi こういう周C上で C C 1 z4 + 1 dz     を計算すると 上の積分も求まる

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

複素数と複素関数🤔🤔

Slide 16

Slide 16 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1

Slide 17

Slide 17 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1

Slide 18

Slide 18 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面

Slide 19

Slide 19 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面 x y

Slide 20

Slide 20 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面 x y ・ z = x + yi

Slide 21

Slide 21 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面 x y ・ z = x + yi x

Slide 22

Slide 22 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面 x y ・ z = x + yi x y

Slide 23

Slide 23 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面 実軸 x y 虚軸 ・ z = x + yi x y

Slide 24

Slide 24 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面 実軸 x y 虚軸 ・ z = x + yi x y r

Slide 25

Slide 25 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面 実軸 x y 虚軸 ・ z = x + yi x y r θ

Slide 26

Slide 26 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面 実軸 x y 虚軸 ・ z = x + yi x y r θ r cosθ

Slide 27

Slide 27 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面 実軸 x y 虚軸 ・ z = x + yi x y r θ r cosθ r sinθ

Slide 28

Slide 28 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面 実軸 x y 虚軸 ・ z = x + yi x y r θ r cosθ r sinθ z = r(cos θ + i sin θ)

Slide 29

Slide 29 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面 実軸 x y 虚軸 ・ z = x + yi x y r θ r cosθ r sinθ [絶対値] z = r(cos θ + i sin θ)

Slide 30

Slide 30 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面 実軸 x y 虚軸 ・ z = x + yi x y r θ r cosθ r sinθ [絶対値] [偏角] z = r(cos θ + i sin θ)

Slide 31

Slide 31 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数と複素関数 6 複素数で定義された関数が[複素関数] 複素数 虚部 実部 z = x + yi ( は実数, ) x, y i = −1 複素平面 実軸 x y 虚軸 ・ z = x + yi x y r θ r cosθ r sinθ [絶対値] [偏角] 複素数には大小はない 絶対値の大小がある z = r(cos θ + i sin θ)

Slide 32

Slide 32 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素数の指数関数(ふたたび) 7 実数の指数関数のテイラー展開 すると ex = 1 + x 1! + x2 2! + · · · + xn n! + · · · 複素数の指数関数は,テイラー展開で定義する ez = 1 + z 1! + z2 2! + · · · + zn n! + · · · eiθ = 1 + (iθ) 1! + (iθ)2 2! + · · · + (iθ)n n! + · · · = (1 − θ2 2! + θ4 4! − · · · ) + i( θ 1! − θ3 3! + · · · ) cosθ のテイラー展開 sinθ のテイラー展開 よって eiθ = cos θ + i sin θ θ = π のとき eiπ + 1 = 0[オイラーの等式] ※本当は,級数をこんなふうに分けるのは   いつでもできるわけではありません💦💦

Slide 33

Slide 33 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)テイラー展開について 8 テイラー展開 f(x) = f(a) + f′ (a) 1! (x − a) + f′ ′ (a) 2! (x − a)2 + ⋯ + f(n)(a) n! (x − a)n + ⋯ x a 微分が1つもわからないと, 最初の位置 しか わからない f(a) 1階微分 がわかると,進む方向がわかる f′ (a) 2階微分 がわかると, 「進む方向の変化」がわかる f′ ′ (a) 定数関数 1次 関 数 2次関数 3次関数 3階微分 がわかると, 「『進む方向の変化』の変化」がわかる f′ ′ ′ (a) 関数 f(x) f(a) がすべてわかるなら,関数 の「行く末」はすべてわかる f(a), f′ (a), f′ ′ (a), …, f(n)(a), … f(x)

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

複素関数と微分 正則関数

Slide 36

Slide 36 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の微分 10 複素関数の微分の定義は,実関数と同様 f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z    

Slide 37

Slide 37 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の微分 10 複素関数の微分の定義は,実関数と同様 f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z     ただし,変数は複素平面上にあるのが,大きな違い

Slide 38

Slide 38 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の微分 10 複素関数の微分の定義は,実関数と同様 f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z     ただし,変数は複素平面上にあるのが,大きな違い

Slide 39

Slide 39 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の微分 10 複素関数の微分の定義は,実関数と同様 f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z     複素関数 f(z) が,複素平面の領域 D で[正則] ただし,変数は複素平面上にあるのが,大きな違い

Slide 40

Slide 40 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の微分 10 複素関数の微分の定義は,実関数と同様 → f(z) が D 内のどこでも微分可能 f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z     複素関数 f(z) が,複素平面の領域 D で[正則] ただし,変数は複素平面上にあるのが,大きな違い

Slide 41

Slide 41 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の微分 10 複素関数の微分の定義は,実関数と同様 → f(z) が D 内のどこでも微分可能 f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z     複素関数 f(z) が,複素平面の領域 D で[正則] ただし,変数は複素平面上にあるのが,大きな違い

Slide 42

Slide 42 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の微分 10 複素関数の微分の定義は,実関数と同様 → f(z) が D 内のどこでも微分可能 f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z     複素関数 f(z) が,複素平面の領域 D で[正則] ただし,変数は複素平面上にあるのが,大きな違い 複素平面上で微分可能とは?

Slide 43

Slide 43 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素平面上での「微分可能」 11 複素関数 f(z) が,複素平面上のある点 z で微分可能とは f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z    

Slide 44

Slide 44 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素平面上での「微分可能」 11 複素関数 f(z) が,複素平面上のある点 z で微分可能とは 複素平面上で z + Δz が z にどのように近づいても,極限値はひとつに定まる f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z    

Slide 45

Slide 45 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素平面上での「微分可能」 11 複素関数 f(z) が,複素平面上のある点 z で微分可能とは 複素平面上で z + Δz が z にどのように近づいても,極限値はひとつに定まる f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z    

Slide 46

Slide 46 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素平面上での「微分可能」 11 複素関数 f(z) が,複素平面上のある点 z で微分可能とは 複素平面上で z + Δz が z にどのように近づいても,極限値はひとつに定まる f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z    

Slide 47

Slide 47 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素平面上での「微分可能」 11 複素関数 f(z) が,複素平面上のある点 z で微分可能とは 複素平面上で z + Δz が z にどのように近づいても,極限値はひとつに定まる f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z    

Slide 48

Slide 48 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素平面上での「微分可能」 11 複素関数 f(z) が,複素平面上のある点 z で微分可能とは 複素平面上で z + Δz が z にどのように近づいても,極限値はひとつに定まる f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z     実軸 虚軸 z z + Δz

Slide 49

Slide 49 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素平面上での「微分可能」 11 複素関数 f(z) が,複素平面上のある点 z で微分可能とは 複素平面上で z + Δz が z にどのように近づいても,極限値はひとつに定まる f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z     実軸 虚軸 z z + Δz

Slide 50

Slide 50 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素平面上での「微分可能」 11 複素関数 f(z) が,複素平面上のある点 z で微分可能とは 複素平面上で z + Δz が z にどのように近づいても,極限値はひとつに定まる f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z     実軸 虚軸 z z + Δz

Slide 51

Slide 51 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素平面上での「微分可能」 11 複素関数 f(z) が,複素平面上のある点 z で微分可能とは 複素平面上で z + Δz が z にどのように近づいても,極限値はひとつに定まる f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z     実軸 虚軸 z z + Δz

Slide 52

Slide 52 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素平面上での「微分可能」 11 複素関数 f(z) が,複素平面上のある点 z で微分可能とは 複素平面上で z + Δz が z にどのように近づいても,極限値はひとつに定まる f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z     実軸 虚軸 z z + Δz どのように近づいても,極限値は同じ

Slide 53

Slide 53 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素平面上での「微分可能」 11 複素関数 f(z) が,複素平面上のある点 z で微分可能とは 複素平面上で z + Δz が z にどのように近づいても,極限値はひとつに定まる f′(z) = df dz = lim ∆z→0 f(z + ∆z) − f(z) ∆z     実軸 虚軸 z z + Δz どのように近づいても,極限値は同じ 正則関数は,「折り目のないぐにゃぐにゃの板」

Slide 54

Slide 54 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数を図示すると 12 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 f(z) = z 実軸 虚軸 f(z)の実部 色: f(z)の虚部 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 f(z) = z3 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 3 f(z) = ez MATLABで描画 参考:http://jp.mathworks.com/help/matlab/examples/functions-of-complex-variables.html

Slide 55

Slide 55 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則でない例 13 f(z) = 1 / z −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −20 −15 −10 −5 0 5 10 15 20 MATLABで描画 参考:http://jp.mathworks.com/help/matlab/examples/functions-of-complex-variables.html

Slide 56

Slide 56 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則でない例 13 f(z) = 1 / z −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −20 −15 −10 −5 0 5 10 15 20 こういう「穴」が問題になる MATLABで描画 参考:http://jp.mathworks.com/help/matlab/examples/functions-of-complex-variables.html

Slide 57

Slide 57 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシー・リーマンの関係式 14 複素関数 f(z) が正則である必要十分条件は z = x + yi とするとき f(z) = u(x, y) + iv(x, y) と表せるなら ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ∂u ∂x = ∂v ∂y かつ ∂u ∂y = − ∂v ∂x

Slide 58

Slide 58 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシー・リーマンの関係式 14 複素関数 f(z) が正則である必要十分条件は z = x + yi とするとき f(z) = u(x, y) + iv(x, y) と表せるなら ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ∂u ∂x = ∂v ∂y かつ ∂u ∂y = − ∂v ∂x 実軸 虚軸 z = x + yi

Slide 59

Slide 59 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシー・リーマンの関係式 14 複素関数 f(z) が正則である必要十分条件は z = x + yi とするとき f(z) = u(x, y) + iv(x, y) と表せるなら ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ∂u ∂x = ∂v ∂y かつ ∂u ∂y = − ∂v ∂x 実軸 虚軸 z = x + yi 極限をとるときにどのように近づいてもよいので

Slide 60

Slide 60 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシー・リーマンの関係式 14 複素関数 f(z) が正則である必要十分条件は z = x + yi とするとき f(z) = u(x, y) + iv(x, y) と表せるなら ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ∂u ∂x = ∂v ∂y かつ ∂u ∂y = − ∂v ∂x x + (y + Δy)i 実軸 虚軸 z = x + yi 極限をとるときにどのように近づいてもよいので

Slide 61

Slide 61 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシー・リーマンの関係式 14 複素関数 f(z) が正則である必要十分条件は z = x + yi とするとき f(z) = u(x, y) + iv(x, y) と表せるなら (x + Δx) + yi ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ∂u ∂x = ∂v ∂y かつ ∂u ∂y = − ∂v ∂x x + (y + Δy)i 実軸 虚軸 z = x + yi 極限をとるときにどのように近づいてもよいので

Slide 62

Slide 62 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシー・リーマンの関係式 14 複素関数 f(z) が正則である必要十分条件は z = x + yi とするとき f(z) = u(x, y) + iv(x, y) と表せるなら (x + Δx) + yi ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ ∂u ∂x = ∂v ∂y かつ ∂u ∂y = − ∂v ∂x x + (y + Δy)i 実軸 虚軸 z = x + yi 極限をとるときにどのように近づいてもよいので この2通りを考える

Slide 63

Slide 63 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシー・リーマンの関係式 15 実軸 虚軸 z = x + yi (x + Δx) + yi x + (y + Δy)i この2通りの近づき方で極限値は等しいので を2通りの近づき方で表す f′ (z)

Slide 64

Slide 64 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシー・リーマンの関係式 15 実軸 虚軸 z = x + yi (x + Δx) + yi x + (y + Δy)i この2通りの近づき方で極限値は等しいので を2通りの近づき方で表す f′ (z)

Slide 65

Slide 65 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシー・リーマンの関係式 15 実軸 虚軸 z = x + yi (x + Δx) + yi x + (y + Δy)i この2通りの近づき方で極限値は等しいので を2通りの近づき方で表す f′ (z) f′(z) = lim ∆x→0 {u(x + ∆x, y) + iv(x + ∆x, y)} − {u(x, y) + iv(x, y)} ((x + ∆x) + yi) − (x + yi) = lim ∆x→0 u(x + ∆x, y) − u(x, y) ∆x + i lim ∆x→0 v(x + ∆x, y) − v(x, y) ∆x = ∂u ∂x + i ∂v ∂x

Slide 66

Slide 66 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシー・リーマンの関係式 15 実軸 虚軸 z = x + yi (x + Δx) + yi x + (y + Δy)i この2通りの近づき方で極限値は等しいので を2通りの近づき方で表す f′ (z) f′(z) = lim ∆x→0 {u(x + ∆x, y) + iv(x + ∆x, y)} − {u(x, y) + iv(x, y)} ((x + ∆x) + yi) − (x + yi) = lim ∆x→0 u(x + ∆x, y) − u(x, y) ∆x + i lim ∆x→0 v(x + ∆x, y) − v(x, y) ∆x = ∂u ∂x + i ∂v ∂x

Slide 67

Slide 67 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシー・リーマンの関係式 15 実軸 虚軸 z = x + yi (x + Δx) + yi x + (y + Δy)i この2通りの近づき方で極限値は等しいので を2通りの近づき方で表す f′ (z) f′(z) = lim ∆x→0 {u(x + ∆x, y) + iv(x + ∆x, y)} − {u(x, y) + iv(x, y)} ((x + ∆x) + yi) − (x + yi) = lim ∆x→0 u(x + ∆x, y) − u(x, y) ∆x + i lim ∆x→0 v(x + ∆x, y) − v(x, y) ∆x = ∂u ∂x + i ∂v ∂x f′(z) = lim ∆y→0 {u(x, y + ∆y) + iv(x, y + ∆y)} − {u(x, y) + iv(x, y)} (x + (y + ∆y)i) − (x + yi) = lim ∆y→0 u(x, y + ∆y) − u(x, y) i∆y + i lim ∆x→0 v(x, y + ∆y) − v(x, y) i∆y = −i lim ∆y→0 u(x, y + ∆y) − u(x, y) ∆y + lim ∆x→0 v(x, y + ∆y) − v(x, y) ∆y = ∂v ∂y − i ∂u ∂y

Slide 68

Slide 68 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシー・リーマンの関係式 15 実軸 虚軸 z = x + yi (x + Δx) + yi x + (y + Δy)i この2通りの近づき方で極限値は等しいので を2通りの近づき方で表す f′ (z) f′(z) = lim ∆x→0 {u(x + ∆x, y) + iv(x + ∆x, y)} − {u(x, y) + iv(x, y)} ((x + ∆x) + yi) − (x + yi) = lim ∆x→0 u(x + ∆x, y) − u(x, y) ∆x + i lim ∆x→0 v(x + ∆x, y) − v(x, y) ∆x = ∂u ∂x + i ∂v ∂x f′(z) = lim ∆y→0 {u(x, y + ∆y) + iv(x, y + ∆y)} − {u(x, y) + iv(x, y)} (x + (y + ∆y)i) − (x + yi) = lim ∆y→0 u(x, y + ∆y) − u(x, y) i∆y + i lim ∆x→0 v(x, y + ∆y) − v(x, y) i∆y = −i lim ∆y→0 u(x, y + ∆y) − u(x, y) ∆y + lim ∆x→0 v(x, y + ∆y) − v(x, y) ∆y = ∂v ∂y − i ∂u ∂y

Slide 69

Slide 69 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシー・リーマンの関係式 15 実軸 虚軸 z = x + yi (x + Δx) + yi x + (y + Δy)i この2通りの近づき方で極限値は等しいので を2通りの近づき方で表す f′ (z) f′(z) = lim ∆x→0 {u(x + ∆x, y) + iv(x + ∆x, y)} − {u(x, y) + iv(x, y)} ((x + ∆x) + yi) − (x + yi) = lim ∆x→0 u(x + ∆x, y) − u(x, y) ∆x + i lim ∆x→0 v(x + ∆x, y) − v(x, y) ∆x = ∂u ∂x + i ∂v ∂x f′(z) = lim ∆y→0 {u(x, y + ∆y) + iv(x, y + ∆y)} − {u(x, y) + iv(x, y)} (x + (y + ∆y)i) − (x + yi) = lim ∆y→0 u(x, y + ∆y) − u(x, y) i∆y + i lim ∆x→0 v(x, y + ∆y) − v(x, y) i∆y = −i lim ∆y→0 u(x, y + ∆y) − u(x, y) ∆y + lim ∆x→0 v(x, y + ∆y) − v(x, y) ∆y = ∂v ∂y − i ∂u ∂y これらが実部・虚部とも等しい

Slide 70

Slide 70 text

No content

Slide 71

Slide 71 text

複素関数の積分

Slide 72

Slide 72 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実関数の積分 17 この面積を 求めたい … f(x) x f(x) x 長方形で近似 a b

Slide 73

Slide 73 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実関数の積分 17 この面積を 求めたい … f(x) x f(x) x x0 長方形で近似 a b xn

Slide 74

Slide 74 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実関数の積分 17 この面積を 求めたい … f(x) x f(x) x x0 長方形で近似 a b xn xi

Slide 75

Slide 75 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実関数の積分 17 この面積を 求めたい … f(x) x f(x) x x0 長方形で近似 a b xn xi xi+1

Slide 76

Slide 76 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実関数の積分 17 この面積を 求めたい … f(x) x f(x) x x0 長方形で近似 a b xn xi xi+1 ξi

Slide 77

Slide 77 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実関数の積分 17 この面積を 求めたい … f(x) x f(x) x x0 長方形で近似 高さ f(ξi) a b xn xi xi+1 ξi

Slide 78

Slide 78 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実関数の積分 17 この面積を 求めたい … f(x) x f(x) x x0 長方形で近似 高さ f(ξi) a b xn xi xi+1 ξi ∞ n−1 i=0 f(ξi)(xi+1 − xi)

Slide 79

Slide 79 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実関数の積分 17 この面積を 求めたい 区切りを無限に細かく かつ分点の間隔の最大値→0 … f(x) x f(x) x x0 長方形で近似 高さ f(ξi) a b xn xi xi+1 ξi ∞ n−1 i=0 f(ξi)(xi+1 − xi)

Slide 80

Slide 80 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実関数の積分 17 この面積を 求めたい 区切りを無限に細かく かつ分点の間隔の最大値→0 … f(x) x f(x) x x0 長方形で近似 高さ f(ξi) a b xn xi xi+1 ξi ∞ n−1 i=0 f(ξi)(xi+1 − xi) b a f(x)dx = lim n→∞ n−1 i=0 f(ξi)(xi+1 − xi)

Slide 81

Slide 81 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 実関数の積分 17 この面積を 求めたい 区切りを無限に細かく かつ分点の間隔の最大値→0 … f(x) x f(x) x x0 長方形で近似 高さ f(ξi) a b 実関数の積分 xn xi xi+1 ξi ∞ n−1 i=0 f(ξi)(xi+1 − xi) b a f(x)dx = lim n→∞ n−1 i=0 f(ξi)(xi+1 − xi)

Slide 82

Slide 82 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の積分 18 積分区間だけでなく複素平面のどこを通って積分するか[経路]が重要

Slide 83

Slide 83 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の積分 18 積分区間だけでなく複素平面のどこを通って積分するか[経路]が重要 実軸 虚軸 経路C

Slide 84

Slide 84 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の積分 18 積分区間だけでなく複素平面のどこを通って積分するか[経路]が重要 実軸 虚軸 経路C 経路を z = z(t) のように パラメータで表す

Slide 85

Slide 85 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の積分 18 積分区間だけでなく複素平面のどこを通って積分するか[経路]が重要 実軸 虚軸 経路C 経路を z = z(t) のように パラメータで表す t t t

Slide 86

Slide 86 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の積分 18 積分区間だけでなく複素平面のどこを通って積分するか[経路]が重要 実軸 虚軸 経路C 経路を z = z(t) のように パラメータで表す t t t

Slide 87

Slide 87 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の積分 18 積分区間だけでなく複素平面のどこを通って積分するか[経路]が重要 実軸 虚軸 経路C 経路を z = z(t) のように パラメータで表す t t t z(ti) z(ti+1)

Slide 88

Slide 88 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の積分 18 積分区間だけでなく複素平面のどこを通って積分するか[経路]が重要 実軸 虚軸 経路C 経路を z = z(t) のように パラメータで表す t t t z(ti) z(ti+1) ξi

Slide 89

Slide 89 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の積分 18 積分区間だけでなく複素平面のどこを通って積分するか[経路]が重要 実軸 虚軸 経路C 経路を z = z(t) のように パラメータで表す t t t 経路の上に「板」が載っているイメージ (ただし「高さ」は複素数) z(ti) z(ti+1) ξi

Slide 90

Slide 90 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の積分 18 積分区間だけでなく複素平面のどこを通って積分するか[経路]が重要 実軸 虚軸 経路C 経路を z = z(t) のように パラメータで表す t t t 経路の上に「板」が載っているイメージ (ただし「高さ」は複素数) z(ti) z(ti+1) ξi 「高さ」 f(ξi)

Slide 91

Slide 91 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の積分 18 積分区間だけでなく複素平面のどこを通って積分するか[経路]が重要 実軸 虚軸 経路C 経路を z = z(t) のように パラメータで表す t t t 経路の上に「板」が載っているイメージ (ただし「高さ」は複素数) z(ti) z(ti+1) ξi 「高さ」 f(ξi) C f(z)dz = lim n→∞ n−1 i=0 f(ξi)(z(ti+1) − z(ti))

Slide 92

Slide 92 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 複素関数の積分 18 積分区間だけでなく複素平面のどこを通って積分するか[経路]が重要 実軸 虚軸 経路C 経路を z = z(t) のように パラメータで表す t t t 経路の上に「板」が載っているイメージ (ただし「高さ」は複素数) z(ti) z(ti+1) ξi 「高さ」 f(ξi) C f(z)dz = lim n→∞ n−1 i=0 f(ξi)(z(ti+1) − z(ti)) f(z) の経路 C に沿った積分

Slide 93

Slide 93 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 19 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a)

Slide 94

Slide 94 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 19 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない

Slide 95

Slide 95 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 20 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない

Slide 96

Slide 96 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 20 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない 経路C を z = z(t) で表す 両端は z(0) = a, z(1) = b

Slide 97

Slide 97 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 20 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない 経路C を z = z(t) で表す 両端は z(0) = a, z(1) = b C f(z)dz = 1 0 f(z(t)) dz(t) dt dt = 1 0 dF(z(t)) dz dz(t) dt dt

Slide 98

Slide 98 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 20 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない 経路C を z = z(t) で表す 両端は z(0) = a, z(1) = b (置換積分) C f(z)dz = 1 0 f(z(t)) dz(t) dt dt = 1 0 dF(z(t)) dz dz(t) dt dt

Slide 99

Slide 99 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 20 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない 経路C を z = z(t) で表す 両端は z(0) = a, z(1) = b (置換積分) C f(z)dz = 1 0 f(z(t)) dz(t) dt dt = 1 0 dF(z(t)) dz dz(t) dt dt

Slide 100

Slide 100 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 20 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない 経路C を z = z(t) で表す 両端は z(0) = a, z(1) = b (置換積分) C f(z)dz = 1 0 f(z(t)) dz(t) dt dt = 1 0 dF(z(t)) dz dz(t) dt dt

Slide 101

Slide 101 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 20 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない 経路C を z = z(t) で表す 両端は z(0) = a, z(1) = b (置換積分) C f(z)dz = 1 0 f(z(t)) dz(t) dt dt = 1 0 dF(z(t)) dz dz(t) dt dt

Slide 102

Slide 102 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 20 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない 経路C を z = z(t) で表す 両端は z(0) = a, z(1) = b (置換積分) C f(z)dz = 1 0 f(z(t)) dz(t) dt dt = 1 0 dF(z(t)) dz dz(t) dt dt

Slide 103

Slide 103 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 20 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない 経路C を z = z(t) で表す 両端は z(0) = a, z(1) = b dF(z(t)) dt = dF(z(t)) dz dz(t) dt (置換積分) C f(z)dz = 1 0 f(z(t)) dz(t) dt dt = 1 0 dF(z(t)) dz dz(t) dt dt

Slide 104

Slide 104 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 20 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない 経路C を z = z(t) で表す 両端は z(0) = a, z(1) = b dF(z(t)) dt = dF(z(t)) dz dz(t) dt (置換積分) C f(z)dz = 1 0 f(z(t)) dz(t) dt dt = 1 0 dF(z(t)) dz dz(t) dt dt (合成関数の微分)

Slide 105

Slide 105 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 20 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない 経路C を z = z(t) で表す 両端は z(0) = a, z(1) = b dF(z(t)) dt = dF(z(t)) dz dz(t) dt (置換積分) C f(z)dz = 1 0 f(z(t)) dz(t) dt dt = 1 0 dF(z(t)) dz dz(t) dt dt (合成関数の微分)

Slide 106

Slide 106 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 20 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない 経路C を z = z(t) で表す 両端は z(0) = a, z(1) = b dF(z(t)) dt = dF(z(t)) dz dz(t) dt (置換積分) C f(z)dz = 1 0 f(z(t)) dz(t) dt dt = 1 0 dF(z(t)) dz dz(t) dt dt (合成関数の微分) C f(z)dz = 1 0 dF(z(t)) dt dt = F(z(1)) − F(z(0)) = F(b) − F(a)

Slide 107

Slide 107 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 正則関数と積分 20 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない 経路C を z = z(t) で表す 両端は z(0) = a, z(1) = b dF(z(t)) dt = dF(z(t)) dz dz(t) dt (置換積分) C f(z)dz = 1 0 f(z(t)) dz(t) dt dt = 1 0 dF(z(t)) dz dz(t) dt dt (合成関数の微分) C f(z)dz = 1 0 dF(z(t)) dt dt = F(z(1)) − F(z(0)) = F(b) − F(a)

Slide 108

Slide 108 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 閉曲線に沿った積分 21 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない さっきの定理

Slide 109

Slide 109 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 閉曲線に沿った積分 21 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない さっきの定理 ということは,

Slide 110

Slide 110 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 閉曲線に沿った積分 21 複素関数 f(z) が,領域 D での正則関数 F(z) の微分なら 経路 C が両端 a, b を含めてすべて D 内にあれば F′(z) = f(z) ならば C f(z)dz = F(b) − F(a) 積分は経路に依存しない さっきの定理 ということは, 経路 C が単純閉曲線なら,始点も終点も同じだから ず C f(z)dz = 0 積分定  

Slide 111

Slide 111 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 22 複素関数 f(z) が,領域 D での正則関数 F(z) の微分で 経路 C が, D 内にある単純閉曲線ならば F′(z) = f(z) ならば 閉曲線に沿った積分 ず C f(z)dz = 0 積分定    

Slide 112

Slide 112 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 22 実は 複素関数 f(z) が,領域 D での正則関数 F(z) の微分で 経路 C が, D 内にある単純閉曲線ならば F′(z) = f(z) ならば 閉曲線に沿った積分 ず C f(z)dz = 0 積分定    

Slide 113

Slide 113 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 22 実は 複素関数 f(z) が,領域 D での正則関数 F(z) の微分で 経路 C が, D 内にある単純閉曲線ならば F′(z) = f(z) ならば 閉曲線に沿った積分 ず C f(z)dz = 0 積分定     経路 C が, D 内にある単純閉曲線ならば ず C f(z)dz = 0 積分定   複素関数 f(z) が,領域 D での正則関数で

Slide 114

Slide 114 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 22 実は 複素関数 f(z) が,領域 D での正則関数 F(z) の微分で 経路 C が, D 内にある単純閉曲線ならば F′(z) = f(z) ならば 閉曲線に沿った積分 ず C f(z)dz = 0 積分定     経路 C が, D 内にある単純閉曲線ならば ず C f(z)dz = 0 積分定   複素関数 f(z) が,領域 D での正則関数で

Slide 115

Slide 115 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 22 実は 複素関数 f(z) が,領域 D での正則関数 F(z) の微分で 経路 C が, D 内にある単純閉曲線ならば F′(z) = f(z) ならば 閉曲線に沿った積分 ず C f(z)dz = 0 積分定     経路 C が, D 内にある単純閉曲線ならば ず C f(z)dz = 0 積分定   複素関数 f(z) が,領域 D での正則関数で

Slide 116

Slide 116 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 22 実は 複素関数 f(z) が,領域 D での正則関数 F(z) の微分で 経路 C が, D 内にある単純閉曲線ならば F′(z) = f(z) ならば 閉曲線に沿った積分 ず C f(z)dz = 0 積分定     経路 C が, D 内にある単純閉曲線ならば ず C f(z)dz = 0 積分定   複素関数 f(z) が,領域 D での正則関数で [コーシーの積分定理]

Slide 117

Slide 117 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 22 実は 複素関数 f(z) が,領域 D での正則関数 F(z) の微分で 経路 C が, D 内にある単純閉曲線ならば F′(z) = f(z) ならば 閉曲線に沿った積分 ず C f(z)dz = 0 積分定     経路 C が, D 内にある単純閉曲線ならば ず C f(z)dz = 0 積分定   複素関数 f(z) が,領域 D での正則関数で [コーシーの積分定理] 示唆しているのは

Slide 118

Slide 118 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 22 実は 複素関数 f(z) が,領域 D での正則関数 F(z) の微分で 経路 C が, D 内にある単純閉曲線ならば F′(z) = f(z) ならば 閉曲線に沿った積分 ず C f(z)dz = 0 積分定     経路 C が, D 内にある単純閉曲線ならば ず C f(z)dz = 0 積分定   複素関数 f(z) が,領域 D での正則関数で [コーシーの積分定理] 示唆しているのは 正則関数の微分は正則関数

Slide 119

Slide 119 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 22 実は 複素関数 f(z) が,領域 D での正則関数 F(z) の微分で 経路 C が, D 内にある単純閉曲線ならば F′(z) = f(z) ならば 閉曲線に沿った積分 ず C f(z)dz = 0 積分定     経路 C が, D 内にある単純閉曲線ならば ず C f(z)dz = 0 積分定   複素関数 f(z) が,領域 D での正則関数で [コーシーの積分定理] 示唆しているのは 正則関数の微分は正則関数 正則関数は何度でも微分できる

Slide 120

Slide 120 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 22 実は 複素関数 f(z) が,領域 D での正則関数 F(z) の微分で 経路 C が, D 内にある単純閉曲線ならば F′(z) = f(z) ならば 閉曲線に沿った積分 ず C f(z)dz = 0 積分定     経路 C が, D 内にある単純閉曲線ならば ず C f(z)dz = 0 積分定   複素関数 f(z) が,領域 D での正則関数で [コーシーの積分定理] 示唆しているのは 正則関数の微分は正則関数 正則関数は何度でも微分できる (証明の概略に,次回で少し触れます)

Slide 121

Slide 121 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 22 実は 複素関数 f(z) が,領域 D での正則関数 F(z) の微分で 経路 C が, D 内にある単純閉曲線ならば F′(z) = f(z) ならば 閉曲線に沿った積分 ず C f(z)dz = 0 積分定     経路 C が, D 内にある単純閉曲線ならば ず C f(z)dz = 0 積分定   複素関数 f(z) が,領域 D での正則関数で [コーシーの積分定理] 示唆しているのは 正則関数の微分は正則関数 正則関数は何度でも微分できる 注: 「領域内で正則」であって, 「経路上で正則」ではない (証明の概略に,次回で少し触れます)

Slide 122

Slide 122 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 22 実は 複素関数 f(z) が,領域 D での正則関数 F(z) の微分で 経路 C が, D 内にある単純閉曲線ならば F′(z) = f(z) ならば 閉曲線に沿った積分 ず C f(z)dz = 0 積分定     経路 C が, D 内にある単純閉曲線ならば ず C f(z)dz = 0 積分定   複素関数 f(z) が,領域 D での正則関数で [コーシーの積分定理] 示唆しているのは 正則関数の微分は正則関数 正則関数は何度でも微分できる C f(z)dz 閉曲線上の積分を表す 注: 「領域内で正則」であって, 「経路上で正則」ではない (証明の概略に,次回で少し触れます)

Slide 123

Slide 123 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 23 複素関数 f(z) が,領域 D での正則関数で 経路 C が, D 内にある閉曲線ならば コーシーの積分定理 証明は,グリーンの定理で ず C f(z)dz = 0 積分定      

Slide 124

Slide 124 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 23 複素関数 f(z) が,領域 D での正則関数で 経路 C が, D 内にある閉曲線ならば コーシーの積分定理 証明は,グリーンの定理で ず C f(z)dz = 0 積分定       C (Pdx + Qdy) = D′ ∂Q ∂x − ∂P ∂y dxdy

Slide 125

Slide 125 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 23 複素関数 f(z) が,領域 D での正則関数で 経路 C が, D 内にある閉曲線ならば コーシーの積分定理 証明は,グリーンの定理で ず C f(z)dz = 0 積分定       C (Pdx + Qdy) = D′ ∂Q ∂x − ∂P ∂y dxdy 2次元関数

Slide 126

Slide 126 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 23 複素関数 f(z) が,領域 D での正則関数で 経路 C が, D 内にある閉曲線ならば コーシーの積分定理 証明は,グリーンの定理で ず C f(z)dz = 0 積分定       閉曲線 C 上での(線)積分 C (Pdx + Qdy) = D′ ∂Q ∂x − ∂P ∂y dxdy 2次元関数

Slide 127

Slide 127 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 23 複素関数 f(z) が,領域 D での正則関数で 経路 C が, D 内にある閉曲線ならば コーシーの積分定理 証明は,グリーンの定理で ず C f(z)dz = 0 積分定       閉曲線 C 上での(線)積分 C (Pdx + Qdy) = D′ ∂Q ∂x − ∂P ∂y dxdy 2次元関数 閉曲線 C に囲まれた領域 D´ 内での(面)積分

Slide 128

Slide 128 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 23 複素関数 f(z) が,領域 D での正則関数で 経路 C が, D 内にある閉曲線ならば コーシーの積分定理 証明は,グリーンの定理で ず C f(z)dz = 0 積分定       閉曲線 C 上での(線)積分 C (Pdx + Qdy) = D′ ∂Q ∂x − ∂P ∂y dxdy 2次元関数 閉曲線 C に囲まれた領域 D´ 内での(面)積分 線積分と面積分を交換

Slide 129

Slide 129 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 23 複素関数 f(z) が,領域 D での正則関数で 経路 C が, D 内にある閉曲線ならば コーシーの積分定理 証明は,グリーンの定理で ず C f(z)dz = 0 積分定       閉曲線 C 上での(線)積分 C (Pdx + Qdy) = D′ ∂Q ∂x − ∂P ∂y dxdy 2次元関数 閉曲線 C に囲まれた領域 D´ 内での(面)積分 f(z) = u(x, y) + iv(x, y) として 線積分と面積分を交換

Slide 130

Slide 130 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 23 複素関数 f(z) が,領域 D での正則関数で 経路 C が, D 内にある閉曲線ならば コーシーの積分定理 証明は,グリーンの定理で ず C f(z)dz = 0 積分定       閉曲線 C 上での(線)積分 C (Pdx + Qdy) = D′ ∂Q ∂x − ∂P ∂y dxdy 2次元関数 閉曲線 C に囲まれた領域 D´ 内での(面)積分 C f(z)dz = C {u(x, y) + iv(x, y)}(dx + idy) = C (udx − vdy) + i C (vdx + udy) = D′ − ∂v ∂x − ∂u ∂y dxdy + i D′ ∂u ∂x − ∂v ∂y dxdy f(z) = u(x, y) + iv(x, y) として 線積分と面積分を交換

Slide 131

Slide 131 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 コーシーの積分定理 23 複素関数 f(z) が,領域 D での正則関数で 経路 C が, D 内にある閉曲線ならば コーシーの積分定理 証明は,グリーンの定理で ず C f(z)dz = 0 積分定       閉曲線 C 上での(線)積分 C (Pdx + Qdy) = D′ ∂Q ∂x − ∂P ∂y dxdy 2次元関数 閉曲線 C に囲まれた領域 D´ 内での(面)積分 C f(z)dz = C {u(x, y) + iv(x, y)}(dx + idy) = C (udx − vdy) + i C (vdx + udy) = D′ − ∂v ∂x − ∂u ∂y dxdy + i D′ ∂u ∂x − ∂v ∂y dxdy f(z) = u(x, y) + iv(x, y) として 正則関数なので,コーシー・リーマンの 関係式よりどちらもゼロ 線積分と面積分を交換

Slide 132

Slide 132 text

No content

Slide 133

Slide 133 text

問題🌀🌀

Slide 134

Slide 134 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題(1) 25 という関係をつかって, を指数関数で表してください。 eiθ = cos θ + i sin θ sin θ, cos θ より eiθ = cos θ + i sin θ e−iθ = cos(−θ) + i sin(−θ) = cos θ − i sin θ だから, だから, eiθ + e−iθ = 2 cos θ cos θ = eiθ + e−iθ 2 eiθ − e−iθ = 2i sin θ sin θ = eiθ − e−iθ 2i

Slide 135

Slide 135 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題(2) 26 の加法定理 を 三角関数と指数関数の関係を使って導いてください。 sin sin(x + y) = sin x cos y + cos x sin y を指数関数で表すと sin x cos y + cos x sin y sin x cos y + cos x sin y = eix − e−ix 2i · eiy + e−iy 2 + eix + e−ix 2 · eiy − e−iy 2i = 1 4i (eix − e−ix)(eiy + e−iy) + (eix + e−ix)(eiy − e−iy)

Slide 136

Slide 136 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 問題(2) 27 sin x cos y + cos x sin y = eix − e−ix 2i · eiy + e−iy 2 + eix + e−ix 2 · eiy − e−iy 2i = 1 4i (eix − e−ix)(eiy + e−iy) + (eix + e−ix)(eiy − e−iy) 右辺を展開して整理すると sin x cos y + cos x sin y = 1 4i (ei(x+y) − e−i(x+y)) + (ei(x−y) − e−i(x−y)) + (ei(x+y) − e−i(x+y)) − (ei(x−y) − e−i(x−y)) = 1 4i 2(ei(x+y) − e−i(x+y)) = ei(x+y) − e−i(x+y) 2i = sin(x + y)

Slide 137

Slide 137 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 今日のまとめ 28 複素関数  複素数の指数関数  複素関数の微分→「正則関数」  複素関数の積分(経路に沿った積分) コーシーの積分定理 領域内で正則な関数を, 領域内の閉曲線に沿って積分すると0

Slide 138

Slide 138 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 今日のまとめ 28 複素関数  複素数の指数関数  複素関数の微分→「正則関数」  複素関数の積分(経路に沿った積分) コーシーの積分定理 領域内で正則な関数を, 領域内の閉曲線に沿って積分すると0 正則でない点を囲んで積分したら?

Slide 139

Slide 139 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 次回に向けて 29 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 3 f(z) = ez f(z) = 1 / z −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −20 −15 −10 −5 0 5 10 15 20 正則でない点を囲んで積分したら?

Slide 140

Slide 140 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 次回に向けて 29 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 3 f(z) = ez f(z) = 1 / z −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −20 −15 −10 −5 0 5 10 15 20 正則でない点を囲んで積分したら?

Slide 141

Slide 141 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 次回に向けて 29 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 3 f(z) = ez f(z) = 1 / z −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −20 −15 −10 −5 0 5 10 15 20 正則でない点を囲んで積分したら? 積分は0

Slide 142

Slide 142 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 次回に向けて 29 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 3 f(z) = ez f(z) = 1 / z −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −20 −15 −10 −5 0 5 10 15 20 正則でない点を囲んで積分したら? 積分は0

Slide 143

Slide 143 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 次回に向けて 29 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 3 f(z) = ez f(z) = 1 / z −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −20 −15 −10 −5 0 5 10 15 20 正則でない点を囲んで積分したら? 積分は0 積分は?

Slide 144

Slide 144 text

29 2024年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 次回に向けて 29 −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 0 0.5 1 1.5 2 2.5 3 f(z) = ez f(z) = 1 / z −1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1 −20 −15 −10 −5 0 5 10 15 20 正則でない点を囲んで積分したら? 積分は0 積分は? 正則でない「穴」によって決まる