Slide 1

Slide 1 text

Follow @chewxy on Twitter Yepoko Lessons For Machine Learning on Small Data Xuanyi Chew YOW! Data 2021

Slide 2

Slide 2 text

Follow @chewxy on Twitter The Puzzle Term Number rureponga talu 10 malapunga yepoko 15 supu 20 tokapunga telu 21 alapunga yepoko 27 polangipula talu 30 tokapu rureponga yepoko 35 tokapu malapu 40 tokapu talu 48 tokapu alapunga talu 50 tokapu talu tokapunga telu 69 tokapu talu polangipunga yepoko 79 tokapu yepoko alapunga telu 97

Slide 3

Slide 3 text

Follow @chewxy on Twitter The Puzzle Term Number rureponga talu 10 malapunga yepoko 15 supu 20 tokapunga telu 21 alapunga yepoko 27 polangipula talu 30 tokapu rureponga yepoko 35 tokapu malapu 40 tokapu talu 48 tokapu alapunga talu 50 tokapu talu tokapunga telu 69 tokapu talu polangipunga yepoko 79 tokapu yepoko alapunga telu 97 Translate: ● tokapu polangipu ● tokapu talu rureponga telu ● tokapu yepoko malapunga talu ● tokapu yepoko polangipunga telu ● 13 ● 66 ● 72 ● 76 ● 95

Slide 4

Slide 4 text

Follow @chewxy on Twitter The Puzzle - One More Thing Term Number rureponga talu 10 malapunga yepoko 15 supu 20 tokapunga telu 21 alapunga yepoko 27 polangipula talu 30 tokapu rureponga yepoko 35 tokapu malapu 40 tokapu talu 48 tokapu alapunga talu 50 tokapu talu tokapunga telu 69 tokapu talu polangipunga yepoko 79 tokapu yepoko alapunga telu 97 Translate: ● tokapu polangipu ● tokapu talu rureponga telu ● tokapu yepoko malapunga talu ● tokapu yepoko polangipunga telu ● 13 ● 66 ● 72 ● 76 ● 95 telu < yepoko

Slide 5

Slide 5 text

Follow @chewxy on Twitter Neural Language Models to the Rescue

Slide 6

Slide 6 text

Follow @chewxy on Twitter The ML Tasks 1. Categorization 2. Regression 3. Translation (sequence to sequence)

Slide 7

Slide 7 text

Follow @chewxy on Twitter Neural Language Models: The Process 1. Download a pre-trained model 2. Fine-tune it to the task using examples (all 13 of them!) 3. ??? 4. Profit!!!

Slide 8

Slide 8 text

Follow @chewxy on Twitter BERT Results Test Predicted Result tokapu polangipu 55.21 ✗ tokapu talu rureponga telu 54.44 ✗ tokapu yepoko malapunga talu 57.98 ✗ tokapu yepoko polangipunga telu 58.22 ✗

Slide 9

Slide 9 text

Follow @chewxy on Twitter GPT-3 > “If two times three is six, what is four times four” “Sixteen”

Slide 10

Slide 10 text

Follow @chewxy on Twitter GPT-3 > if 'rureponga talu' means 10 and 'malapunga yepoko' means 15 and 'supu' means 20 and 'tokapunga telu' means 21 and 'alapunga yepoko' means 27 and 'polangipula talu' means 30 and 'tokapu rureponga yepoko' means 35 and 'tokapu malapu' means 40 and 'tokapu talu' means 48 and 'tokapu alapunga talu' means 50 and 'tokapu talu tokapunga telu' means 69 and 'tokapu talu polangipunga yepoko' means 79 and 'tokapu yepoko alapunga telu' means 97, then what does 'tokapu polangipu' mean? "I understand! It means 'twice 10'!" > “what does ‘tokapu talu rureponga telu’ mean?” "Ah! I know the answer to this! It's 'uproot 100 10 rods long trees'."

Slide 11

Slide 11 text

Follow @chewxy on Twitter GPT-3 > if 'rureponga talu' means 10 and 'malapunga yepoko' means 15 and 'supu' means 20 and 'tokapunga telu' means 21 and 'alapunga yepoko' means 27 and 'polangipula talu' means 30 and 'tokapu rureponga yepoko' means 35 and 'tokapu malapu' means 40 and 'tokapu talu' means 48 and 'tokapu alapunga talu' means 50 and 'tokapu talu tokapunga telu' means 69 and 'tokapu talu polangipunga yepoko' means 79 and 'tokapu yepoko alapunga telu' means 97, then what does 'tokapu talu rureponga telu' mean? "I know the answer! Here's a guess: 100 rods long, 10 inches in diameter, made of wood, with three holes." > "what does 'tokapu polangipu' mean?" "I think it means 'two times 100'."

Slide 12

Slide 12 text

Follow @chewxy on Twitter GPT-3 > if 'rureponga talu' means 10 and 'malapunga yepoko' means 15 and 'supu' means 20 and 'tokapunga telu' means 21 and 'alapunga yepoko' means 27 and 'polangipula talu' means 30 and 'tokapu rureponga yepoko' means 35 and 'tokapu malapu' means 40 and 'tokapu talu' means 48 and 'tokapu alapunga talu' means 50 and 'tokapu talu tokapunga telu' means 69 and 'tokapu talu polangipunga yepoko' means 79 and 'tokapu yepoko alapunga telu' means 97, then what does 'tokapu polangipu' mean? Let me take a look at my old records. Yes, 'tokapu polangipu' means 100. > what does ‘tokapu talu rureponga telu’ mean? Sorry, I can’t find the answer for this.

Slide 13

Slide 13 text

Follow @chewxy on Twitter GPT-3 ... Socrates: tokapu alapunga talu Aristotle: 50 Socrates: tokapu talu tokapunga telu Aristotle: 69 Socrates: tokapu talu polangipunga yepoko Aristotle: 79 Socrates: tokapu yepoko alapunga telu Aristotle: 97 Socrates: tokapu polangipu Aristotle: I think it means 'Socrates is a dung beetle, Aristotle is a snake, and I am a dodo.'

Slide 14

Slide 14 text

Follow @chewxy on Twitter Random Forests 1. Byte-pair encode text to be used as features 2. Encode position of pairs in sentence 3. ??? 4. Profit!

Slide 15

Slide 15 text

Follow @chewxy on Twitter Random Forests Feature Matrix . C:Syl1 N:Pos1 C:Syl2 N:Pos2 C:Syl3 N:Pos3 ... C:Syl12 N:Pos12 N:Answer 1 146 0 145 0 129 0 ... 0 0 10 2 144 0 136 0 121 1 ... 0 0 15 3 115 0 117 0 140 0 ... 0 0 20 4 148 0 135 0 136 0 ... 0 0 21 5 142 0 136 0 121 1 ... 0 0 27 6 150 0 149 0 137 0 ... 0 0 30 7 148 0 135 0 146 1 ... 0 0 35 8 148 0 135 0 144 1 ... 0 0 40 9 148 0 135 0 116 1 ... 0 0 48 10 148 0 135 0 142 1 ... 0 0 50 11 148 0 135 0 116 1 ... 0 0 69 12 148 0 135 0 116 1 ... 111 3 79 13 148 0 135 0 121 1 ... 0 0 97

Slide 16

Slide 16 text

Follow @chewxy on Twitter Random Forests - Results Test Predicted Result tokapu polangipu 36.74 ✗ tokapu talu rureponga telu 61.08 ✗ tokapu yepoko malapunga talu 57.62 ✗ tokapu yepoko polangipunga telu 52.09 ✗

Slide 17

Slide 17 text

Follow @chewxy on Twitter Human (me) ● Finished translation in about an 40 mins. ● Used basic statistics. ● Required basic linguistics knowledge. ● Required backtracking. ● Required pattern matching. ● Required basic arithmetics. ● Required basic algebra.

Slide 18

Slide 18 text

Follow @chewxy on Twitter How I Solved It

Slide 19

Slide 19 text

Follow @chewxy on Twitter Offshoot On Orthography Term Number rureponga talu 10 malapunga yepoko 15 supu 20 tokapunga telu 21 alapunga yepoko 27 polangipula talu 30 tokapu rureponga yepoko 35 tokapu malapu 40 tokapu talu 48 tokapu alapunga talu 50 tokapu talu tokapunga telu 69 tokapu talu polangipunga yepoko 79 tokapu yepoko alapunga telu 97 Term Number ɾʊɾeβɔŋathɑkʟ̝ ̊ʊ 10 ɱɑkʟ̝ ̊aβʊŋaʎepɔkɔ 15 thʊβʊ 20 thɔɡaβʊŋathekʟ̝ ̊ʊ 21 ɑkʟ̝ ̊ɑβʊŋaʎepɔkɔ 27 phɔkʟ̝ ̊ɑŋɪβʊkʟ̝ ̊athɑkʟ̝ ̊ʊ 30 thɔɡaβʊɾʊɾeβɔŋaʎepɔkɔ 35 thɔɡaβʊɱɑkʟ̝ ̊aβʊ 40 thɔɡaβʊthɑkʟ̝ ̊ʊ 48 thɔɡaβʊɑkʟ̝ ̊ɑβʊŋathɑkʟ̝ ̊ʊ 50 thɔɡaβʊthɑkʟ̝ ̊ʊthɔɡaβʊɱɑthekʟ̝ ̊ʊ 69 thɔɡaβʊthɑkʟ̝ ̊ʊphɔkʟ̝ ̊ɑŋɪβʊŋaʎepɔkɔ 79 thɔɡaβʊʎepɔkɔɑkʟ̝ ̊ɑβʊŋathekʟ̝ ̊ʊ 97

Slide 20

Slide 20 text

Follow @chewxy on Twitter Syllables alapunga

Slide 21

Slide 21 text

Follow @chewxy on Twitter Syllables alapunga [ɑ, kʟ ̝ ̊ɑ, βʊ, ŋa]

Slide 22

Slide 22 text

Follow @chewxy on Twitter Byte Pair Encoding alapunga

Slide 23

Slide 23 text

Follow @chewxy on Twitter Byte Pair Encoding alapunga [al, la, ap, pu, un, ng, ga]

Slide 24

Slide 24 text

Follow @chewxy on Twitter Byte Pair Encoding alapunga [al, la, ap, pu, un, ng, ga] [󰎃, 💎, 👐]

Slide 25

Slide 25 text

Follow @chewxy on Twitter Byte Pair Encoding alapunga [al, la, ap, pu, un, ng, ga] [󰎃, 💎, 👐] 󰎃 al 💎 🇿u 👐 🆖a 🇿 ap 🆖 ng

Slide 26

Slide 26 text

Follow @chewxy on Twitter Byte Pair Statistics pu 17 ap 14 ok 14 al 11 ng 11 ga 9 ka 9 lu 9 po 9 to 9 la 8 ep 7 un 7 ta 6 ko 5 ye 5 el 3 te 3 ur 2 an 2 gi 2 ip 2 ma 2 ol 2 on 2 re 2 ru 2 su 1 ul 1 up 1

Slide 27

Slide 27 text

Follow @chewxy on Twitter Syllable Statistics pu 17 ap 14 ok 14 al 11 ng 11 ga 9 ka 9 lu 9 po 9 to 9 la 8 ep 7 un 7 ta 6 ko 5 ye 5 el 3 te 3 ur 2 an 2 gi 2 ip 2 ma 2 ol 2 on 2 re 2 ru 2 su 1 ul 1 up 1 nga 9 ngi 2 a 2

Slide 28

Slide 28 text

Follow @chewxy on Twitter Syllable Statistics pu 17 ap 14 ok 14 al 11 ng 11 ga 9 ka 9 lu 9 po 9 to 9 la 8 ep 7 un 7 ta 6 ko 5 ye 5 el 3 te 3 ur 2 an 2 gi 2 ip 2 ma 2 ol 2 on 2 re 2 ru 2 su 1 ul 1 up 1 nga 9 ngi 2 a 2

Slide 29

Slide 29 text

Follow @chewxy on Twitter Recursive Pattern Matching Some “phrases” are repeated. Term Number rureponga talu 10 malapunga yepoko 15 supu 20 tokapunga telu 21 alapunga yepoko 27 polangipula talu 30 tokapu rureponga yepoko 35 tokapu malapu 40 tokapu talu 48 tokapu alapunga talu 50 tokapu talu tokapunga telu 69 tokapu talu polangipunga yepoko 79 tokapu yepoko alapunga telu 97

Slide 30

Slide 30 text

Follow @chewxy on Twitter Recursive Pattern Matching Some “phrases” are repeated. We now have “word” units. Term Number rureponga talu 10 malapunga yepoko 15 supu 20 tokapunga telu 21 alapunga yepoko 27 polangipula talu 30 tokapu rureponga yepoko 35 tokapu malapu 40 tokapu talu 48 tokapu alapunga talu 50 tokapu talu tokapunga telu 69 tokapu talu polangipunga yepoko 79 tokapu yepoko alapunga telu 97

Slide 31

Slide 31 text

Follow @chewxy on Twitter Recursive Pattern Matching Some “phrases” are repeated. We now have “word” units. We now have “sub-word” units. Term Number rureponga talu 10 malapunga yepoko 15 supu 20 tokapunga telu 21 alapunga yepoko 27 polangipula talu 30 tokapu rureponga yepoko 35 tokapu malapu 40 tokapu talu 48 tokapu alapunga talu 50 tokapu talu tokapunga telu 69 tokapu talu polangipunga yepoko 79 tokapu yepoko alapunga telu 97

Slide 32

Slide 32 text

Follow @chewxy on Twitter Solving It - Apply Broad Pattern Matching tokapu talu tokapunga telu 48 21 69 + Bigrams should be considered. tokapunga telu 21 tokapu talu 48 tokapu talu tokapunga telu 69 * - assumption ? - open question + - newly synthesized fact

Slide 33

Slide 33 text

Follow @chewxy on Twitter Solving It - First Level Pattern Matching tokapu talu tokapunga telu 48 + 21 69 + Bigrams should be considered. + Juxtaposition of bigrams implies addition. ? How tightly do bigrams bind? tokapunga telu 21 tokapu talu 48 tokapu talu tokapunga telu 69 * - assumption ? - open question + - newly synthesized fact

Slide 34

Slide 34 text

Follow @chewxy on Twitter Solving It - Apply New Information on New Problem tokapu talu polangipunga yepoko 48 + x 79 + Bigrams should be considered. + Juxtaposition of bigrams implies addition. ? How tightly do bigrams bind? tokapunga telu 21 tokapu talu 48 tokapu talu tokapunga telu 69 tokapu talu polangipunga yepoko 79 * - assumption ? - open question + - newly synthesized fact

Slide 35

Slide 35 text

Follow @chewxy on Twitter Solving It - Apply New Information on New Problem tokapu talu polangipunga yepoko 48 + 31 79 + Bigrams should be considered. + Juxtaposition of bigrams implies addition. ? How tightly do bigrams bind? tokapunga telu 21 tokapu talu 48 tokapu talu tokapunga telu 69 tokapu talu polangipunga yepoko 79 polangipunga yepoko 31 * - assumption ? - open question + - newly synthesized fact

Slide 36

Slide 36 text

Follow @chewxy on Twitter Solving It - A Leap of Faith + Bigrams should be considered. + Juxtaposition of bigrams implies addition. ? How tightly do bigrams bind? * polangipula is a typo of polangipunga polangipunga yepoko 31 polangipula talu 30 polangipunga yepoko 31 * - assumption ? - open question + - newly synthesized fact

Slide 37

Slide 37 text

Follow @chewxy on Twitter Solving It - A Second Leap of Faith polangipunga yepoko = 31 polangipunga talu = 30 + Bigrams should be considered. + Juxtaposition of bigrams implies addition. ? How tightly do bigrams bind? * polangipula is a typo of polangipunga + talu < yepoko; yepoko = (succ talu) polangipunga yepoko 31 polangipula talu 30 polangipunga yepoko 31 * - assumption ? - open question + - newly synthesized fact

Slide 38

Slide 38 text

Follow @chewxy on Twitter Solving It - Applying New Information tokapu alapunga talu x + y 50 + Bigrams should be considered. + Juxtaposition of bigrams implies addition. * Bigrams bind tightest to the right. * polangipula is a typo of polangipunga + talu < yepoko; yepoko = (succ talu) tokapu alapunga talu 50 alapunga yepoko 27 polangipunga yepoko 31 * - assumption ? - open question + - newly synthesized fact

Slide 39

Slide 39 text

Follow @chewxy on Twitter Solving It alapunga talu = x alapunga yepoko = 27 + Bigrams should be considered. + Juxtaposition of bigrams implies addition. * Bigrams bind tightest to the right. * polangipula is a typo of polangipunga + talu < yepoko; yepoko = (succ talu) tokapu alapunga talu 50 alapunga yepoko 27 polangipunga yepoko 31 alapunga talu 26 * - assumption ? - open question + - newly synthesized fact

Slide 40

Slide 40 text

Follow @chewxy on Twitter Solving It tokapu alapunga talu x + 26 50 + Bigrams should be considered. + Juxtaposition of bigrams implies addition. * Bigrams bind tightest to the right. * polangipula is a typo of polangipunga + talu < yepoko; yepoko = (succ talu) tokapu alapunga talu 50 alapunga yepoko 27 polangipunga yepoko 31 alapunga talu 26 * - assumption ? - open question + - newly synthesized fact

Slide 41

Slide 41 text

Follow @chewxy on Twitter Solving It- Breakthrough 1 tokapu alapunga talu 24 + 26 50 + Bigrams should be considered. + Juxtaposition of bigrams implies addition. * Bigrams bind tightest to the right. * polangipula is a typo of polangipunga + talu < yepoko; yepoko = (succ talu) tokapu alapunga talu 50 alapunga yepoko 27 polangipunga yepoko 31 alapunga talu 26 tokapu 24 * - assumption ? - open question + - newly synthesized fact

Slide 42

Slide 42 text

Follow @chewxy on Twitter Solving It- Breakthrough 2 tokapu talu 24 × 2 48 + Bigrams should be considered. + Juxtaposition of bigrams implies addition. * Bigrams bind tightest to the right. * polangipula is a typo of polangipunga + talu < yepoko; yepoko = (succ talu) + Juxtaposition of words in a bigram implies multiplication. tokapu talu 48 polangipunga yepoko 31 alapunga talu 26 tokapu 24 telu 1 talu 2 yepoko 3 * - assumption ? - open question + - newly synthesized fact

Slide 43

Slide 43 text

Follow @chewxy on Twitter Breakthrough Number system is somewhat “positional”. Large numbers appear to be Base-24. Term Number rureponga talu 10 malapunga yepoko 15 supu 20 tokapunga telu 21 alapunga yepoko 27 polangipula talu 30 tokapu rureponga yepoko 35 tokapu malapu 40 tokapu talu 48 tokapu alapunga talu 50 tokapu talu tokapunga telu 69 tokapu talu polangipunga yepoko 79 tokapu yepoko alapunga telu 97

Slide 44

Slide 44 text

Follow @chewxy on Twitter Positional Numbers 四百二十

Slide 45

Slide 45 text

Follow @chewxy on Twitter Positional Numbers 四百二十 400 20

Slide 46

Slide 46 text

Follow @chewxy on Twitter Positional Numbers 四百二十 4 100 2 10 + × × = 420

Slide 47

Slide 47 text

Follow @chewxy on Twitter Positional Numbers 四百二十 4 100 2 10 + × × = 420

Slide 48

Slide 48 text

Follow @chewxy on Twitter Positional Numbers 四百二十 4 100 2 10 + × × = 420

Slide 49

Slide 49 text

Follow @chewxy on Twitter Positional Numbers 四百二十 4 100 2 10 + × × = 420

Slide 50

Slide 50 text

Follow @chewxy on Twitter Positional Numbers 四百二十 4 100 2 10 + × × = 420

Slide 51

Slide 51 text

Follow @chewxy on Twitter Solving It - The -nga Suffix tokapu talu tokapunga telu 21 48 + = 69

Slide 52

Slide 52 text

Follow @chewxy on Twitter Solving It - The -nga Suffix tokapu talu tokapunga telu 24 2 21 × + = 69

Slide 53

Slide 53 text

Follow @chewxy on Twitter Solving It - The -nga Suffix tokapu talu tokapunga telu 24 2 24 ? 1 × + + × = 69

Slide 54

Slide 54 text

Follow @chewxy on Twitter Solving It- The -nga Suffix rureponga talu = 10 12 ? 2 = 10 malapunga yepoko = 15 16 ? 3 = 15 tokapunga telu = 21 24 ? 1 = 21 alapunga yepoko = 27 x ? 3 = 27 + Bigrams should be considered. + Juxtaposition of bigrams implies addition. * Bigrams bind tightest to the right. * polangipula is a typo of polangipunga + talu < yepoko; yepoko = (succ talu) + Juxtaposition of words in a bigram implies multiplication. rureponga talu 10 malapunga yepoko 15 tokapunga telu 21 alapunga yepoko 27 * - assumption ? - open question + - newly synthesized fact

Slide 55

Slide 55 text

Follow @chewxy on Twitter Solving It- The -nga Suffix rureponga talu = 10 12 -4 2 = 10 malapunga yepoko = 15 16 -4 3 = 15 tokapunga telu = 21 24 -4 1 = 21 alapunga yepoko = 27 28 -4 3 = 27 + Bigrams should be considered. + Juxtaposition of bigrams implies addition. * Bigrams bind tightest to the right. * polangipula is a typo of polangipunga + talu < yepoko; yepoko = (succ talu) + Juxtaposition of words in a bigram implies multiplication, except following -nga , then it’s addition. + -nga means (-4). rureponga talu 10 malapunga yepoko 15 tokapunga telu 21 alapunga yepoko 27 * - assumption ? - open question + - newly synthesized fact

Slide 56

Slide 56 text

Follow @chewxy on Twitter Solving It - The -nga Suffix tokapu talu tokapunga telu 24 2 24 ? 1 × + + × = 69

Slide 57

Slide 57 text

Follow @chewxy on Twitter Solving It - The -nga Suffix tokapu talu tokapunga telu 24 2 24 -4 1 × + + + = 69

Slide 58

Slide 58 text

Follow @chewxy on Twitter Inconsistencies in Positional Numbers sixty nine thousand four hundred and twenty 六万九千四百二十 (6 × 10 + 9) × 1000 + 4 × 100 + 2 × 10 6 × 10000 + 9 × 1000 + 4 × 100 + 2 × 10 69420

Slide 59

Slide 59 text

Follow @chewxy on Twitter Solving It... Left as an exercise to the watcher.

Slide 60

Slide 60 text

Follow @chewxy on Twitter ML/AI = “Do What You Just Did, At Scale”

Slide 61

Slide 61 text

Follow @chewxy on Twitter What The Human Needed ● Which examples to work on ● Recursive problem solving (solving for something while solving for another) ● Parallel problem solving (solving for multiple things at once) ● Backtracking ● Error correction ● Feature engineering ● Prior knowledge ○ Arithmetics ○ Algebra ○ Linguistics ○ Statistics ● Putting all these together

Slide 62

Slide 62 text

Follow @chewxy on Twitter What Machines Are Good At ● Which examples to work on ● Recursive problem solving (solving for something while solving for another) ● Parallel problem solving (solving for multiple things at once) ● Backtracking ● Feature engineering ● Error tolerance ● Prior knowledge* ● Putting all these together

Slide 63

Slide 63 text

Follow @chewxy on Twitter AI Has a Long Way to Go Human reasoning is still needed. Reinforcement learning may learn “reasoning”.

Slide 64

Slide 64 text

Follow @chewxy on Twitter Telu More Experiment

Slide 65

Slide 65 text

Follow @chewxy on Twitter Inspecting the BERT Neurons Layer 11, Head 5 (EN), Head 6 (UU) “fourty eight” → “4 8” “tokapu talu” → “4 8” 4 8 [SEP] 4 8 [SEP] [CLS] four## ##ty [SEP] Eight

Slide 66

Slide 66 text

Follow @chewxy on Twitter Talu Artificial Languages Base-10: One byte for units under 5, one byte-pair for units up to 10, multiply-add combinations for the rest up to 100 Base-12: One byte for units under 6, one byte-pair for units up to 12, multiply-add combinations for the rest up to 100. Two ways of doing multiply-add: prefix and postfix multiplication

Slide 67

Slide 67 text

Follow @chewxy on Twitter The Basic Components Base-10 Base-12 a 1 ba 6 e 2 be 7 i 3 bi 8 o 4 bo 9 u 5 bu 10 a 1 ba 7 e 2 be 8 i 3 bi 9 o 4 bo 10 u 5 bu 11 ə 6 bə 12

Slide 68

Slide 68 text

Follow @chewxy on Twitter Examples 1 - Postfix Multiplication Base-10 abu = 11 ebu = 12 bue = 20 abue = 21 obue = 24 ebube = 72 Base-12 abe = 13 ebe = 14 bee = 24 abea = 25 ebea = 26 beə = 72

Slide 69

Slide 69 text

Follow @chewxy on Twitter Examples 2 - Prefix Multiplication Base-10 bua = 11 bue = 12 ebu = 20 ebua = 21 ebuo = 24 bebue = 72 Base-12 bea = 13 bee = 14 ebe = 24 ebea = 25 ebee = 26 əbe = 72

Slide 70

Slide 70 text

Follow @chewxy on Twitter Can a BERT-based LM Translate These Artificial Languages? Multiply-Add Type Base-10 Base-12 Prefix multiplication (e.g. “twenty-four”) Yes No Postfix multiplication (e.g. “four-and-twenty”) No No

Slide 71

Slide 71 text

Follow @chewxy on Twitter Can a LM w/ BERT Arch Translate These Artificial Languages? Multiply-Add Type Base-10 Base-12 Prefix multiplication (e.g. “twenty-four”) Yes* Yes* Postfix multiplication (e.g. “four-and-twenty”) Yes* Yes* * super over-fitted obviously

Slide 72

Slide 72 text

Follow @chewxy on Twitter Yepoko Lessons

Slide 73

Slide 73 text

Follow @chewxy on Twitter Use The Right Tool for the Right Job Machine learning algorithms are probably not the right tool for this puzzle. It’s the right tool for a much larger dataset. Prolog might help.

Slide 74

Slide 74 text

Follow @chewxy on Twitter Careful Thought with Judiciously Placed Statistical Tools For now, we can’t replace careful thought with machines. Machines are awesome at statistics though.

Slide 75

Slide 75 text

Follow @chewxy on Twitter Watch Your Biases! Bias can fuck you up in more ways than you expect.

Slide 76

Slide 76 text

Follow @chewxy on Twitter Closing Thoughts

Slide 77

Slide 77 text

Follow @chewxy on Twitter The Language ● Umbu-ungu/Imbo-ungu is a language in Southern Highlands of PNG. ● Base-4, Base-12, Base-24, Base-28, Base-32 number system. ● PNG is the most linguistically diverse country in the world.

Slide 78

Slide 78 text

Follow @chewxy on Twitter Neural Machine Translation ● Requires parallel corpus. ● Only parallel corpus for Umbu-Ungu is The Bible. ● Rare language communities are underserved.

Slide 79

Slide 79 text

Follow @chewxy on Twitter Join Me (Shameless Plug) https://gorgonia.org [email protected] @chewxy

Slide 80

Slide 80 text

Follow @chewxy on Twitter Thank You

Slide 81

Slide 81 text

Follow @chewxy on Twitter The Fate of Umbu-Ungu andrete - 100 (from hundred in English) tausen - 1000 (from thousand in English) Mostly Tok Pisin (from talk business)

Slide 82

Slide 82 text

Follow @chewxy on Twitter The Deep Learning Bombe - An Enigma