Slide 8
Slide 8 text
Illustrative Example
8
Preprocess
Random Forrest
Gradient Boost
Decision Tree
Sample Pipeline
Our pipeline implementation
c_a = ScaleTestEstimator(50, DecisionTreeClassifier())
c_b = ScaleTestEstimator(50, RandomForestClassifier())
c_c = ScaleTestEstimator(50, GradientBoostingClassifier())
classifiers = [c_a, c_b, c_c]
classifier_results=[]
for classifier in classifiers:
pipe = Pipeline(steps=[('preprocessor', preprocessor),
('classifier', classifier)])
pipe.fit(X_train, y_train)
pipe.predict(X_train)
pipeline = dm.Pipeline()
node_a = dm.OrNode('preprocess', preprocessor)
node_b = dm.OrNode('c_a', c_a)
node_c = dm.OrNode('c_b', c_b)
node_d = dm.OrNode('c_c', c_c)
pipeline.add_edge(node_a, node_b)
pipeline.add_edge(node_a, node_c)
pipeline.add_edge(node_a, node_d)
in_args = {node_a: [Xy_ref_ptr]}
out_args = rt.execute_pipeline(pipeline,
ExecutionType.TRAIN, in_args)
2xfaster