Slide 1

Slide 1 text

No content

Slide 2

Slide 2 text

• • • •

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

𝑖 𝑙𝑖 𝑒𝑖 𝑁 𝑖 𝑁𝑖 𝑁𝑖 𝑁 = 𝑙𝑖 𝑒𝑖 σ 𝑗 𝑙𝑗 𝑒𝑗 𝑒𝑖 = 1 𝑒𝑖 𝑞𝑖 = 𝑙𝑖 𝑒𝑖 𝑞𝑖

Slide 7

Slide 7 text

𝑛 𝑔 = σ𝑗 𝑞𝑗 𝑖 𝑞𝑖 𝑁 𝑝 = 𝑞𝑖 /𝑔 𝑖 Pr 𝑁 = 𝑘 = 𝐵𝑖𝑛𝑜𝑚 𝑘|𝑛, 𝑝 = 𝑛 𝑘 𝑝𝑘 1 − 𝑝 𝑛−𝑘

Slide 8

Slide 8 text

𝑛 𝑔 𝜆 = 𝑛𝑝 = 𝑛𝑞𝑖 𝑔 𝑛, 𝑔 lim 𝜆=𝑛𝑝: fix 𝑛,𝑔→∞ 𝑛 𝑘 𝑝𝑘 1 − 𝑝 𝑛−𝑘 = 𝜆𝑘𝑒−𝜆 𝑘! = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑘|𝜆 𝜆 = 𝑛𝑝 𝑖 𝜆 𝜆 = 1 𝜆 = 2 𝜆 = 3

Slide 9

Slide 9 text

𝜆 𝜆 𝜆1 𝜆2

Slide 10

Slide 10 text

𝜆 𝑖 𝑗 𝜆𝑖𝑗 𝜑 𝜃 𝜃 𝑃 𝑥|𝜃 𝜃 𝑃 𝑥 = 1 𝑀 ෍ 𝑗=1 𝑀 𝑃 𝑥|𝜃𝑗 ≃ න𝜑 𝜃 𝑃 𝑥|𝜃 𝑑𝜃

Slide 11

Slide 11 text

𝐺𝑎𝑚𝑚𝑎 𝜆|𝜇, 𝜙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥|𝜆 න 0 ∞ 𝐺𝑎𝑚𝑚𝑎 𝜆|𝜙, 𝜇 𝜙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥|𝜆 𝑑𝜆 = Γ 𝑥 + 𝜙 Γ 𝑥 + 1 Γ 𝜙 𝜙 𝜇 + 𝜙 𝜙 𝜇 𝜇 + 𝜙 𝑥 = 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚 𝑥|𝜇, 𝜙 𝜇, 𝜙 𝑉 𝑥 = 𝜇 + 𝜇2 𝜙 > 𝜇 𝜙 = ∞

Slide 12

Slide 12 text

No content

Slide 13

Slide 13 text

𝜙 𝜎2 = 𝜇 𝜎2 = 𝜇 + 𝜇2 𝜙

Slide 14

Slide 14 text

𝑒𝑖 𝑞𝑖 𝑥𝑖 ′ = 𝑥𝑖 𝑙𝑖 𝐸 𝑥′ = 𝐸 𝑥 𝑙𝑖 = 𝜇 𝑙𝑖 = ෤ 𝜇, 𝑉 𝑥′ = 𝑉 𝑥 𝑙𝑖 2 = 𝜇 𝑙𝑖 2 + 𝜇2 𝑙𝑖 2𝜙 = ෤ 𝜇 𝑙𝑖 + ෤ 𝜇2 𝜙 ≠ ෤ 𝜇 + ෤ 𝜇2 𝜙

Slide 15

Slide 15 text

log2 𝑦 = 𝑋𝑓𝑢𝑙𝑙 𝛽 log2 𝑦 = 𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝛽 𝑃 𝑌|𝑋𝑓𝑢𝑙𝑙 𝑃 𝑌|𝑋𝑟𝑒𝑑𝑢𝑐𝑒𝑑

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

𝑃 𝑘 = 𝑛 𝑛 − 1 ⋯ 𝑛 − 𝑘 𝑘! 𝑝𝑘 1 − 𝑝 𝑛−𝑘 𝜆 = 𝑛𝑝 𝑛 → ∞ 𝑝 → 0 𝑃 𝑘 ≈ 𝑛𝑘 𝑘! 𝑝𝑘 1 − 𝑝 𝑛 = 𝜆𝑘 𝑘! 1 − 𝜆 𝑛 𝑛 𝑒 1 − 𝜆 𝑛 𝑛 → 𝑒−𝜆 𝑃 𝑘 ≈ 𝜆𝑘 𝑘! 𝑒−𝜆

Slide 18

Slide 18 text

න 0 ∞ 𝐺𝑎𝑚𝑚𝑎 𝜆|𝜙, 𝜇 𝜙 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑥|𝜆 𝑑𝜆 = න 0 ∞ 𝜆𝜙−1𝑒− 𝜆𝜇 𝜙 𝜙 𝜇 𝜙 Γ 𝜙 𝜆𝑥 𝑥! 𝑒−𝜆𝑑𝜆 = 𝜇 𝜙 𝜙 Γ 𝑥 + 1 Γ 𝜙 න 0 ∞ 𝜆𝜙+𝑥−1𝑒−𝜆 𝜇+𝜙 𝜙 𝑑𝜆 = 𝜙 𝜇 + 𝜙 −𝜙 𝜇 𝜇 + 𝜙 𝜙 Γ 𝑥 + 1 Γ 𝜙 𝜙 𝜇 + 𝜙 𝜙+𝑥 Γ 𝜙 + 𝑥 = Γ 𝜙 + 𝑥 Γ 𝑥 + 1 Γ 𝜙 𝜙 𝜇 + 𝜙 𝑥 𝜇 𝜇 + 𝜙 𝜙 = Γ 𝑥 + 𝜙 Γ 𝑥 + 1 Γ 𝜙 𝜙 𝜇 + 𝜙 𝜙 𝜇 𝜇 + 𝜙 𝑥

Slide 19

Slide 19 text

• • • • • •