Slide 1

Slide 1 text

Feryal  M  P  Behbahani     Brain  and  Behavior  Lab   Cartoon  by  Daniele  Quercia  

Slide 2

Slide 2 text

•  Cogni,ve  science:  a  process  of  reverse  engineering     •  the  only  sources  of  methods  we  have  to  reverse  engineer  any   natural    system  is  the  engineering  ideas  from  the  relevant   domains     –  Machine  learning:  provides  an  engineering  toolkit              Cogni,ve  science  draws  on  machine  learning  for  hypotheses              And  provides  machine  learning  with  interes,ng  challenges  

Slide 3

Slide 3 text

Cogni9ve  science   •  Focus  on  specific     experimental  paradigms   •  Embedded  in  psychology   •  Aiming  to  be  cogni,vely   and/or  neurally  plausible     Machine  learning   •  Focus  on  standard  learning   problems   •  Embedded  in  computer   science  and  engineering   •  Aim  for  a  working  system,   whether  mimicking  the   brain  or  not   Is  machine  learning  be=er  off  without  cogni9ve  science?!    

Slide 4

Slide 4 text

•  Computa9onal   –  What  problem  is  the  brain  solving?  What  informa,on  is   required?   •  Algorithmic   –  What  algorithms  are  computed?   •  Implementa9onal   –  How  are  those  algorithms  implemented  

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

How  do  people  represent  categories?   ? Cat   Tiger  

Slide 7

Slide 7 text

Prototype   Cat  

Slide 8

Slide 8 text

Cat   Cat   Cat   Cat   Cat   Cat   All  instances  (exemplars)     are  stored  in  memory  

Slide 9

Slide 9 text

C   C   X   X   P(C,X)   P(C|X)       "Essen9ally,  all  models  are  wrong,  but  some  are  useful"   Box  1973   P(X|C)  P(C  )      

Slide 10

Slide 10 text

•  Categoriza,on  is  a  classic  induc,ve  problem                                                  data:  s,mulus  x                          hypotheses:  category  c     •  We  can  apply  Bayes’  rule:          and  choose  c  such  that  P(c|x)  is  maximized   P(c | x) = p(x |c)P(c) p(x |c)P(c) c ∑

Slide 11

Slide 11 text

Discrimina9on  Boundary  

Slide 12

Slide 12 text

Discrimina9on  Boundary  

Slide 13

Slide 13 text

Discrimina9on  Boundary   ç Observed  shiO  in  classifica,on  boundary:   Predicted  only  by  implied  widening  of   genera,ve  representa,on  of  A  

Slide 14

Slide 14 text

Screen   Subject     •  Two  symbols  from  an  ar,ficial  language  

Slide 15

Slide 15 text

Subject   Screen     •  Two  s,ck-­‐figure  animals  

Slide 16

Slide 16 text

A   B   A   B  

Slide 17

Slide 17 text

B   A   B   A   Machine  Learner  

Slide 18

Slide 18 text

B   A   B   A   B   A   Armadilo   Horse   Machine  Learner   Human  Learner  

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

350°   T1   T2   A   B   B   A   B   A  

Slide 21

Slide 21 text

350°   T1   T2   A   B   B   A   B   A  

Slide 22

Slide 22 text

22   1.    Cogni9ve  science  and  machine  learning     brain  is  the  only  intelligent  system  we  know  about  and  also  the  brain   defines  many  of  the  problems  that  machine  learning  cares  about     cogni,ve  science  depends  on  machine  learning  and  other  engineering   techniques  since  they  are  the  only  source  of  deep  insights  that  a  reverse   engineer  can  possibly  draw  on     2.    Marr’s  3  Levels  of  explana9on     3.    Human  categorisa9on  vs  machine  classifica9on    

Slide 23

Slide 23 text

Human  categorisa,on  behaviour  is  not  consistent  with  discrimina,ve  strategies;  rather,   it  can  be  best  explained  through  Bayesian  genera,ve  classifica,on.               Cartoon  by  Daniele  Quercia  

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

Ques9ons?  

Slide 26

Slide 26 text

p(x) = 1 2πσ exp{−(x − µ)2 /2σ2} Probability density p(x) (x-­‐µ)/σ   mean standard deviation variance = σ2

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

Hsu  &  Griffiths,  2010   Kalish  et  al,  2010   Bayesian  Decision  Theory  has  emerged  as  a  principled  way  to  explain  how  the  brain  has  to   act  in  the  face  of  uncertainty  and  was  very  successful  in  explaining  behavior  in  perceptual   and  motor  tasks  (Ernst  &  Banks,  2002,  Kording  &  Wolpert,  2002,  Faisal  et  al.,  2008).    

Slide 29

Slide 29 text

ILLUSTRATION: BAYESIAN COGNITIVE SCIENCE ACROSS THE LEVELS? •  Computa,onal   •  Algorithmic   •  Implementa,onal   •  Bayesian  picture  of  structure  of   reasoning   –  Consistancy   –  Bayesian  upda,ng   –  Specific  priors   •  Graphical  models,  MCMC   learning,  etc.   •  Bayesian  neural  calcula,ons   (e.g.,  Latham,  Pouget,  Shadlen   etc)  

Slide 30

Slide 30 text

No content