Slide 1

Slide 1 text

Towards Neural Network Potential for Excited states Hagai Masaya @ Preferred Networks Summer Internship 2023

Slide 2

Slide 2 text

Light - related phenomena 2 Photosynthesis[1] Human vision[2] Photodamage[3] [1] https://en.wikipedia.org/wiki/Photosynthesis [2] http://light.physics.auth.gr/enc/vision_en.html [3] Facial plastic surgery : FPS 25 5 (2009): 337-46 .

Slide 3

Slide 3 text

Light - related devices Solar cell[1] OLED[2] Bioimaging[3] 3 [1] https://www.science.org/content/article/amp-solar-cells-scientists-ditch-silicon [2] https://en.wikipedia.org/wiki/OLED [3] https://www.k-ishiilab.iis.u-tokyo.ac.jp/research/theme3/3-1_en.html

Slide 4

Slide 4 text

Theory of absorption and emission 4 S 0 (Ground State) S 1 (Excited State) S 2 (Excited State) Energy Nuclear Coordinates hν hν 1. Absorption 2. Structural relaxation in S 1 3. Emission 4. Structural relaxation in S 0 ① ② ③ ④ Radiative process Nonradiative process ● Internal conversion ● Intersystem crossing ● Photoreaction

Slide 5

Slide 5 text

Problems in traditional ways of excited state calc. 5 Calculation time of excited state[1] Conventional methods v.s. NNP Calculation scaling against number of atoms in molecule[2] Conventional method takes much time, O(N4)~O(N!) (N is molecule size) Large number of molecules for new photo-related materials Big molecule such as protein and molecular complex [1] Chem. Rev. 121, 9873–9926 (2021). [2] http://www.chem.waseda.ac.jp/nakai/?page_id=1291

Slide 6

Slide 6 text

Conventional neural network potential (NNP) 6 Input: Molecules Atomic numbers + Coordinates Z Rx Ry Rz … Output : DFT’s property (Density Functional Theory) - Energy - Gradient - Dipole moment S 0 Ground State Neural Network[1] [1] Chem. Sci. 8, 3192–3203 (2017).

Slide 7

Slide 7 text

Objective of this study : NNP for excited states 7 7 Input: Molecules Atomic numbers + Coordinates Z Rx Ry Rz … Output: DFT’s & TDDFT’s property Neural Network[1] - Energy - Gradient - Dipole moment S 0 Ground State - Energy - Gradient - Dipole moment - Transition Dipole S 1 ,S 2 Excited State [1] ANI-1 : Chem. Sci. 8, 3192–3203 (2017).

Slide 8

Slide 8 text

Extensive property and Intensive property 8 Methane(n=1) Ethane (n=2) Hexane (n=6) (S 0 opt. / S 1 opt.) C n H 2n+ 2 Ground state energy [eV] Excitation energy [eV] -1100 12.86 -2168 11.12 -6440 / -6439 10.06 / 7.09 ~2 ~3 Ground state energy is extensive, Excitation energy is intensive O(N) O(1)

Slide 9

Slide 9 text

No size consistency for excited state 9 Excited state energy = Ground state energy + Excitation energy extensive property intensive property System A System B ΔEe=12.9 eV ΔEe=10.1 eV System A+B ΔEe=10.1 eV 1000Å

Slide 10

Slide 10 text

Overview of this study 10 Dataset (Made by myself) ● n=1~6 Alkane (n_sample=4,000) ● QM5 (n_sample=57,000) NNP model ● SchNet ● M3GNet ➔ Comfirm better performance M3GNet compared to SchNet Extrapolaion ● Heptane (n=7) ● Octane (n=8) Readout layer ● Output E(S1) directry ○ Sum model ● Output ΔE(S1) as E(S1)=E(S0)+ΔE(S1) ○ Softmin model ○ Softmin + self-attention model (Didn’t improve) Loss 1. E(S1) loss 2. ΔE(S1) loss

Slide 11

Slide 11 text

Dataset preparation 11 S 0 (Ground State) S 1 (Excited State) S 2 Energy Nuclear Coordinates 1. Find equilibrium structure of S 0 and S 1 (  ) 2. Sampling structures around each equilibrium structure (Wigner sampling[1] (≒Normal mode sampling)) [1] Wigner sampling : M. Pinheiro Jr, S. Zhang, P. O. Dral, M. Barbatti, Scientific Data. 10, 1–11 (2023).

Slide 12

Slide 12 text

Alkane dataset / QM5 dataset 12 Alkane dataset (total 4,000 data) C n H 2n+2 (n=1,2,3,4,5,6) ● For n=1,2,3,4, sampling 500 structure from S0 opt. structure ● For n=5,6, sampling 500 structures from each of the S0 and S1 opt. structures ● TDDFT PBE0/6-31G(d) using Gaussian 16 QM5 (total 57,000 data) Max. 5 heavy atoms (C,N,O,F) ● 177 S0 opt. structures and 108 S1 opt. structures ● Sampling 200 structures from each optimized structre Heptane(n=7) and Octane(n=8) can be predicted from these data? Made TDDFT dataset for NNP by myself in this internship

Slide 13

Slide 13 text

M3GNet NNP model 13 M3GNnet: C. Chen, S. P. Ong, Nature Computational Science. 2, 718–728 (2022). Hyper parameter ● N block = 3 ● cutoff = 5.0Å ● 3body cutoff = 4.0Å ● node / edge embedding=64dim Readout layer

Slide 14

Slide 14 text

Readout layer 14 Node feature of atom i 1. Sum model 2. Softmin model 3. Softmin + SelfAttention Ground state energy Excited state energy

Slide 15

Slide 15 text

Test of ΔE(S1-S0) with Sum / Softmin readout 15 Sum readout (MAE=140meV) Softmin readout (MAE=66meV) ❏ Softmin readout shows smaller test error

Slide 16

Slide 16 text

Sum readout model (extrapolation) Heptane (n=7) Octane (n=8) ❏ Large MAE compared to TDDFT error (0.24eV) ❏ MAE error scales with the size of molecule

Slide 17

Slide 17 text

Softmin readout model (extrapolation) 17 Heptane (n=7) Octane (n=8) ❏ Small MAE (0.11~0.33 eV) ❏ MAE errors don’t scale with the size of molecule

Slide 18

Slide 18 text

ΔE(S1) loss & Softmin readout 18 Heptane (n=7) Octane (n=8) Test MAE = 18.6 meV ❏ Test dataset MAE (18.6meV) using ΔE(S1) loss is better than one (66meV) using E(S1) loss

Slide 19

Slide 19 text

App 1. Size consistency problem 19 A = Methane, B = Methane ΔE(S1) in A+B ΔE(S2) in A+B A = Methane, B = Pentane (Softmin readout) ❏ Failed to reproduce ΔE(S1) ❏ between ΔE(S1)(Methane) and ΔE(S1)(Pentane) ❏ Success to reproduce ΔE(S1) ❏ Failed to reproduce ΔE(S2) ❏ (Must be same as ΔE(S1))

Slide 20

Slide 20 text

App 2. Geometry optimization of Excited State 20 Geometry optimization of S1 takes long time Optimization using NNP for excited state C-C-C angle vary greatly (S0 opt. 113.5°, S1 opt. 96.5°) Hexane S1 opt. using NNP from S0 opt. init structure C-C-C angle of NNP S1 opt. is 97.8° Fail hydrogen position ● RMSD between initial and S1(TDDFT) = 0.31Å ● RMSD between S1(NNP) and S1(TDDFT) = 0.19Å

Slide 21

Slide 21 text

Test of QM5 result (Softmin readout model) 21 S0/S1 energy (MAE=54/58meV) S1 Excitation energy (MAE=22meV) ΔE(S1) Loss

Slide 22

Slide 22 text

QM5 & [QM5 + hexane] extrapolation 22 Heptane Heptane Octane Octane QM5 dataset QM5+Hexane dataset ❏ QM5 only, octane’s predictions are poor (MAE=0.47/0.75eV) ❏ By adding hexane, extrapolability improved (MAE=0.25/0.14eV)

Slide 23

Slide 23 text

TDDFT error & Summary 23 TDDFT/TZVP MSE [eV] MAE [eV] PBE0 -0.05 0.24 [1] A. D. Laurent, D. Jacquemin, Int. J. Quantum Chem. 113, 2019–2039 (2013). TDDFT vertical transition energy error[1](Ref. CASPT2/TZVP) Test dataset & Heptane & Octane ΔE(S1) MAE Type of Readout layer Type of Loss Sum readout E(S1) Loss Softmin E(S1) Loss Softmin ΔE(S1) Loss Softmin,ΔE(S1) QM5 data Softmin, ΔE(S1) QM5 + Hexane Test dataset MAE [meV] 140 66 19 22 Not yet Heptane/Octane MAE[eV] 0.73/1.40 0.33/0.32 0.40/0.19 0.47/0.75 0.25/0.14 ❏ Achieve errors comparable to TDDFT's own errors

Slide 24

Slide 24 text

Conclusion 24 Conclusion ● Made TDDFT dataset by myself ● Designing readout layer and loss function to reflect excited state property improve performance ● Our best excited state NNP shows errors comparable to TDDFT’s own error (0.24eV) ● Calculation of Octane S1 energy and force using NNP takes only 0.26s (GPU), TDDFT 10s (32cpu)