Slide 9
Slide 9 text
1
5
痥 2 畍 Graph Network 2.2 Graph Network ה DeepLearning ך侭椚
חַיע坎չם煝疴┞חס銨阾ךױכ״ג׆כך韢倀ס阾鼥蔦✄ֿ㸴չ
־מַׂכ䘼ג״յ㎫ 2.7 ⩧מ Transformer ס銨阾⫙㴻聋
ױն
φe
α
(VQ, VK
) = softmax
QKT
dk
φe
β
(VV al
) = VV al
ρe→v(E, VQ, VK, VV al
) = φe
α
(VQ, VK
)φe
β
(VV al
) = softmax
QKT
dk
VV al
= Vres
φv = FFN(Vres
)
┪阾ס俙䑑ע㎫ 2.7 כ Transformer ס韢倀脝מ⫙圸䧯鉿ַױ
גնVQ
յVK
յVV al
עאב Transformer 韢倀ס Q כ K כ V 銨י
ַױնױגյVres
ע Dot product attention ס⭦槏䔿ס鉿⮬յFFN ע
Transformer מֽׄ Feed Forward Network(MLP כ⻎聋) 銨יַױ
ն겏笴ꫀ俙 ρ ס阾鼥祔ⷃמג״מ鉿⮬銨阾氠ַי⪢יסؿ٭غכ
ؙشة┞䍲מ⺅䪒ַױגֿյGraph Network ס韢倀ךע┞ח┞ח⺅
䪒זיַֹך阾鼥ֿ㸴չ沌םױն
2-2-1 硼ךע MPNN מꫀיյ2-2-2 硼ךע Transformer NLNN ס
┞❛ס镄掾־牞霼鉿ַױגն籽ׂ 2-2-3 硼ךע׆׆ױך牞霼ג
GN block(Graph Network) ס銨阾ס寯氠䙎ס牞霼מֵגזיյאס♑ס
DeepLearning מחַי GN block ס銨阾⩧מ牞霼鉿ַױն
2.2.3 Graph Network כ圫ղז DeepLearning 邌ׇ
׆׆ױךך MPNN NLNN 牞霼ױגֿյ2-2-3 硼ךע Graph
Network 氠ַי׆׆ױך⺅䪒זג♧㜽ס DeepLearning סؓ٭؞طؠ
زٔ牞霼ױն
15