Slide 1

Slide 1 text

asap 英語 の私が、生成AIの力を借りて、 OSSに初コントリビュートした話

Slide 2

Slide 2 text

1 はじめに 自己紹介 asap AI・機械学習の理論に興味を持つエンジニア。 ZennでAI関連の技術記事を書いてます。 「asap zenn」で検索! @asap2650 ぜひ今アカウント作って登録してください @asap2650

Slide 3

Slide 3 text

はじめに

Slide 4

Slide 4 text

3 はじめに はじめに OSSコントリビュート意外と簡単だったよ ついこの間初めてOSSにコントリビュートした超初心者の身ではありますが OSSへのコントリビュートは「ある程度」プログラミングができる人なら簡単だよ! 普段のコーディングとそんなに違いはなかったよ! ということをお話しできればと思います。 @asap2650

Slide 5

Slide 5 text

経緯

Slide 6

Slide 6 text

5 なんのリポジトリ? 経緯 @asap2650 https://github.com/langchain-ai/langchain-google Google CloudのVertexAIやGeminiなどをLangChainで 利用するための「langchain-google」というリポジトリ • VertexAI Google Cloudが提供する機械学習全般を支援する プラットフォーム • Gemini ChatGPTのGoogle版 • LangChain 大規模言語モデル(LLM)を活用した アプリケーション開発を容易にするフレームワーク

Slide 7

Slide 7 text

6 OSSコントリビュートするに至った理由 経緯 @asap2650 RAGシステム開発の業務に必要だから! • ユーザが質問を入力 • LLMがRAGシステムをよびだす。 • 質問文から検索用のベクトルを作る • Dense Embedding Vector :文脈考慮での検索用 • Sparse Embedding Vector :単語での検索用 • Vector Store(DB)に保存された ドキュメント(+ベクトル)と類似度検索 • 検索結果をLLMに返して、それを元に回答させる 【RAGシステムとは】

Slide 8

Slide 8 text

7 OSSコントリビュートするに至った理由 経緯 @asap2650 RAGシステム開発の業務に必要だから! Google CloudのDBをベクトルストアとしたRAGのシステムを構築したい ↓ Embeddingsモデルによるベクトル化はできるけど、ハイブリット検索が動かない!? ↓ バグじゃん!!どうしよ・・・ ↓ マイナーな機能だから、自分が修正するしかない・・・

Slide 9

Slide 9 text

8 どんなバグ? 経緯 @asap2650 チュートリアル通りに実施しても Sparse Embedding Vectorがベクトルストアに格納されない https://python.langchain.com/docs/integrations/vectorstores/google_vertex_ai_vector_search/#hybrid-search

Slide 10

Slide 10 text

バグの原因

Slide 11

Slide 11 text

10 どんなバグ? バグの原因 @asap2650 データ保存部分にSparse Embedding Vectorに関しての 記述がないバグ

Slide 12

Slide 12 text

Issueを立てる

Slide 13

Slide 13 text

12 Issueを立てる Issueを立てる @asap2650 英語ゴミ人間なので OpenAI o1先生に助けてもらいました https://github.com/langchain-ai/langchain-google/issues/720 下記をプロンプトに入れて依頼 • Issue立てるのが初めてであること • 英語が雑魚なこと • バグを発見した経緯 • バグを含むコード • 修正案

Slide 14

Slide 14 text

13 Issueを立てる Issueを立てる @asap2650 ちゃんと記載すればメンテナーの方は見てくれる ちゃんと記載しないと、後回しにされるissueも数多くあります。 コメントもらったらコードの修正・PRを実施

Slide 15

Slide 15 text

コード修正・PR

Slide 16

Slide 16 text

15 コード修正 コード修正・PR @asap2650 READMEをよく読むこと Langchain-googleの場合は やり方を全部説明してくれていた。 参考になると思うので紹介します。

Slide 17

Slide 17 text

16 コード修正 コード修正・PR @asap2650 “fork and pull request” workflowを利用する 元のリポジトリを自分のアカウントにForkする ↓ Forkしたリポジトリをローカルにクローン ↓ コードの修正、テスト、フォーマット、リンティングを実施し、リポジトリにpush ↓ 元リポジトリに対してpull requestを行う 詳細:https://docs.github.com/en/get-started/exploring-projects-on-github/contributing-to-a-project

Slide 18

Slide 18 text

17 Pull Requestを実施 コード修正・PR @asap2650 gpt-4oの力を借りながら、テンプレートに合わせて記載 PRのテンプレートが用意されている場合もあるので、そちらに合わせる(PULL_REQUEST_TEMPLATE.md) テンプレートがなければ、他の方のPRを参考にすれば良い アイコン載ると嬉しい!

Slide 19

Slide 19 text

18 まとめ やることは普通のコーディングと同じ 1 S A I R U 英語 × の私が、生成AIの力を借りて、OSSに初コントリビュートした話 英語ができなくても、生成AIでIssueをPRは作れる 2 コントリビュートを歓迎してくれるリポジトリ最高 3