Slide 1

Slide 1 text

IoT July 18, 2024

Slide 2

Slide 2 text

n p 2024 @ 頻 p 2024 7 18 p July 18, 2024 2

Slide 3

Slide 3 text

IoT July 18, 2024 28

Slide 4

Slide 4 text

July 18, 2024 29

Slide 5

Slide 5 text

(?) n (?) p n IoT p IoT (?) July 18, 2024 30 Livingroom Bedroom Bath- room Wash- room Dining/Kitchen Nature Remo Switchbot Switchbot Hub Echo Flex Echo Flex Smart power strip

Slide 6

Slide 6 text

IoT (PnP IoT) n IoT July 18, 2024 31 TV 4 ( ) ( OFF)

Slide 7

Slide 7 text

July 18, 2024 32 WPS OK ( ) ( OFF) تُ٭عتم٭؜ ԛ ԛ ԛ

Slide 8

Slide 8 text

July 18, 2024 33 WPS OK ( ) ( OFF) تُ٭عتم٭؜ ԛ ԛ ԛ

Slide 9

Slide 9 text

n IoT n July 18, 2024 34

Slide 10

Slide 10 text

July 18, 2024 35

Slide 11

Slide 11 text

n p ( ) n ( ) p July 18, 2024 36

Slide 12

Slide 12 text

[zhang 19] n p n p l l n p F ( ) ≃ 89.5% July 18, 2024 37 [zhang 19] Danger-pose detection system using commodity Wi-Fi for bathroom monitoring, Sensors, 19(4) https://doi.org/10.3390/s19040884 CSI Illustration by Storyset

Slide 13

Slide 13 text

Figure 8. Experiment setup: (a) transmitter (TX), receiver (RX), and server used in our experiment, and (b) configuration of TX, RX, and bathtub. For the dangerous situation simulation, we assumed three dangerous situations as shown in Figure 9: (1) keep the lying position in a long time, (2) sink the whole body below the water surface, and (3) sink the face below the water surface. The danger-pose detection system is used to detect dangerous situations when taking a bath. Although target dangerous situations are not limited to the three simulated situations, we conducted evaluations with these three situations to demonstrate the basic performance of our system as an initial evaluation. (a) (b) (c) Figure 9. Simulated three dangerous situations: (a) steady lying position, (b) the whole body sinks below the water surface, and (c) the face sinks below the water surface. We collected CSI data at a rate of 20 Hz on channel 40 in a 5-GHz band for couple of hours on six different days during a three-month period. During the three-month period, environmental changes including location of furniture and daily objects have been occurred. Locations of transmitter and receiver might also include errors up to approximately 10 centimeters as we put transmitter and receiver on each of the six days. For not in bath, safe, and danger activities, we collected 119,324, 288,291, and 21,572 CSI data samples, respectively, in total in six days. [zhang 19] Danger-pose detection system using commodity Wi-Fi for bathroom monitoring, Sensors, 19(4) https://doi.org/10.3390/s19040884

Slide 14

Slide 14 text

[miyazaki 18][ishida 21] n p n p p p July 18, 2024 39 [miyazaki'18] Initial Attempt on Outdoor Human Detection using IEEE 802.11ac WLAN Signal, IEEE SAS [ishida 21] IEEE 802.11ac-based outdoor device-free human localization, Sensors and Materials, 33(1) CSI Illustration by Storyset

Slide 15

Slide 15 text

n p CSI : 4 p 36m2×9 p n p CSI : 4 p 30m2×11 July 18, 2024 40 WLAN AP CSI Measuring Stations CSI Monitoring Station 1 4 7 2 5 8 3 6 9 CSI Measuring Station STA1 WLAN AP CSI Monitoring Station 30m 6m 6m Label 0: no human 30m CSI Measuring Station STA3 CSI Measuring Station STA2 4.6m 4.6m 5.9m 7.0m 6.9m 6.9m 7.0m 2.3m 1 2 3 4 5 6 7 8 9 10 11 STA2 CSI Measuring Station STA1 WLAN AP CSI Monitoring Station Label 0: no human STA4 STA3 Wall Pillar

Slide 16

Slide 16 text

[uchino 20] n p p n 2 p F : 0.83 July 18, 2024 41 [uchino 20] Initial Design of Two-Stage Acoustic Vehicle Detection System for High Traffic Roads, PerVehicle, IEEE PerCom Workshop D/2 M1 M2 x O d2 d1 D/2 L ౸དྷํ޲ͷมԽΛఆࣜԽ Time t Sound delay Δt ϩόετਪఆʹΑΔ ϑΟοςΟϯά Sound Mapper Vehicle Detector M 2 M 1 Sound Retriever LPFs Out Sound Map 2441 2442 2443 2444 2445 2446 Time [s] −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 Sound Delay [ms] ֶ ੜ F஋0.83Ͱਐߦํ޲Λࣝผ͠ͳ͕Βं྆Λݕग़

Slide 17

Slide 17 text

n 4 n 60 n ⾒ 609 n p めっちゃ時間 かかりました! July 18, 2024 42 [uchino 20] Initial Design of Two-Stage Acoustic Vehicle Detection System for High Traffic Roads, PerVehicle, IEEE PerCom Workshop TP 133 132 265 FN 165 179 344 FP 81 80 161 Precision 0.62 0.62 0.62 Recall 0.45 0.42 0.44 F-measure 0.52 0.50 0.51 harmonic mean of precision and recall, which provides a comprehensive evaluation of the classifier. B. Detection Performance Table I shows the system performance, i.e., the number of TP, FN, and FP detections as well as the calculated precision, recall, and F-measure for ✓t = 1.5s. • The precision of the proposed Two-Stage Acoustic Ve- hicle Detection System is 0.76, 14 points higher than SAVeD. By resetting the detection window in the Post- Fitting block and detecting vehicles using only sound map points in the neighborhood of the estimated vehicle passing time, the amount of FP detections was reduced. • The recall of 0.53 is a 9-point improvement compared to previous work. This is due to the system’s ability to make use of all the sound map points corresponding to a given vehicle. • The F-measure of 0.63 is 12 points higher than SAVeD. The relatively low F-measures exhibited by both the Two- Stage Acoustic Vehicle Detection System and SAVeD are due to their low recall values compared to their precision values. As the number of simultaneously passing vehicles increases, the number of sound map points corresponding to a single vehicle decreases because only one point is drawn on the sound map at each time step. As a result, the S-curve becomes sparse, increasing the probability of a FN detection. • The Two-Stage Acoustic Vehicle Detection System de- Fig. 10. Proposed system F-measure as a function of passing time error margin ✓t Microphone setup location Fig. 11. System monitoring viewpoint The above results show that our Two-Stage Acoustic Vehicle Detection System is an improvement over the SAVeD in terms of vehicle detection performance. C. Passing Time Error The detection performance of our system depends strongly on the estimated passing time used in the Post-Fitting block. As described in Section IV-A, the smaller the passing time error margin ✓ts, the higher the number of FP detections. It is therefore important to examine the influence of the passing time error margin on detection performance. Figure 10 shows the F-measures for ✓t between 0.5 s and 2.0 s. The F-measure starts to increase at about ✓t = 0.6 s and stabilizes around ✓t = 1.2 s. The optimum value of ✓t corresponds to the point at which the F-measure just begins to stabilize, as a too large value of ✓t will cause the system

Slide 18

Slide 18 text

... n IoT n p July 18, 2024 43

Slide 19

Slide 19 text

CSI IoT [ishida 22] Room-by-Room Device Grouping for Put-and- Play IoT System, IEEE Globecom 44 July 18, 2024

Slide 20

Slide 20 text

n WiFi (CSI) p èCSI (= )IoT 45 E F v v A B C D F E G A D E G B C F July 18, 2024

Slide 21

Slide 21 text

n WiFi (IEEE 802.11n, 802.11ac) p ( ) p p 46 CSI (Channel State Information) E[k] R[k] E[k] R[k] ࡶԻn H ௨৴࿏ʢνϟωϧʣ H n Hl = 2 6 6 4 h11 h12 · · · h1j h21 h22 · · · h2j · · · · · · · · · · · · hi1 hi2 · · · hij 3 7 7 5 AAACs3icdVFRS9xAEN5E22pq21MffVk8LD5dk0BRCgXBFx8VPBUuMWw2k7utm03YnRSOkB/os0/+Gzd3UdTDgYWPb775ZnYmraQw6PuPjru2/unzl41N7+vWt+8/Bts7V6asNYcxL2Wpb1JmQAoFYxQo4abSwIpUwnV6d9rlr/+DNqJUlzivIC7YVIlccIaWSgb3Z4mkf2kkIceJF6UwFaphWrN522gbrTdLmiBo6U/agbADEc9KND3zr6VR1InCZ1G4IgqXohfqQ7B0Es9OYsVJ9E6gsn5KL9JiOsPYSwZDf+Qvgq6CoAdD0sd5MniIspLXBSjkkhkzCfwKY2uLgkuwxrWBivE7NoWJhYoVYOJmsfKWHlgmo3mp7VNIF+zrioYVxsyL1CoLhjPzPteRL7mDN60wP44boaoaQfFlp7yWFEvaHZBmQgNHObeAcS3ssJTPmGYc7Zm7LQTv/7wKrsJR4I+CC3948qffxwbZI/vkkATkiJyQM3JOxoQ7v5yxc+sk7m934qZutpS6Tl+zS96EWzwBZ0nNoQ== AAACs3icdVFRS9xAEN5E22pq21MffVk8LD5dk0BRCgXBFx8VPBUuMWw2k7utm03YnRSOkB/os0/+Gzd3UdTDgYWPb775ZnYmraQw6PuPjru2/unzl41N7+vWt+8/Bts7V6asNYcxL2Wpb1JmQAoFYxQo4abSwIpUwnV6d9rlr/+DNqJUlzivIC7YVIlccIaWSgb3Z4mkf2kkIceJF6UwFaphWrN522gbrTdLmiBo6U/agbADEc9KND3zr6VR1InCZ1G4IgqXohfqQ7B0Es9OYsVJ9E6gsn5KL9JiOsPYSwZDf+Qvgq6CoAdD0sd5MniIspLXBSjkkhkzCfwKY2uLgkuwxrWBivE7NoWJhYoVYOJmsfKWHlgmo3mp7VNIF+zrioYVxsyL1CoLhjPzPteRL7mDN60wP44boaoaQfFlp7yWFEvaHZBmQgNHObeAcS3ssJTPmGYc7Zm7LQTv/7wKrsJR4I+CC3948qffxwbZI/vkkATkiJyQM3JOxoQ7v5yxc+sk7m934qZutpS6Tl+zS96EWzwBZ0nNoQ== AAACs3icdVFRS9xAEN5E22pq21MffVk8LD5dk0BRCgXBFx8VPBUuMWw2k7utm03YnRSOkB/os0/+Gzd3UdTDgYWPb775ZnYmraQw6PuPjru2/unzl41N7+vWt+8/Bts7V6asNYcxL2Wpb1JmQAoFYxQo4abSwIpUwnV6d9rlr/+DNqJUlzivIC7YVIlccIaWSgb3Z4mkf2kkIceJF6UwFaphWrN522gbrTdLmiBo6U/agbADEc9KND3zr6VR1InCZ1G4IgqXohfqQ7B0Es9OYsVJ9E6gsn5KL9JiOsPYSwZDf+Qvgq6CoAdD0sd5MniIspLXBSjkkhkzCfwKY2uLgkuwxrWBivE7NoWJhYoVYOJmsfKWHlgmo3mp7VNIF+zrioYVxsyL1CoLhjPzPteRL7mDN60wP44boaoaQfFlp7yWFEvaHZBmQgNHObeAcS3ssJTPmGYc7Zm7LQTv/7wKrsJR4I+CC3948qffxwbZI/vkkATkiJyQM3JOxoQ7v5yxc+sk7m934qZutpS6Tl+zS96EWzwBZ0nNoQ== AAACs3icdVFRS9xAEN5E22pq21MffVk8LD5dk0BRCgXBFx8VPBUuMWw2k7utm03YnRSOkB/os0/+Gzd3UdTDgYWPb775ZnYmraQw6PuPjru2/unzl41N7+vWt+8/Bts7V6asNYcxL2Wpb1JmQAoFYxQo4abSwIpUwnV6d9rlr/+DNqJUlzivIC7YVIlccIaWSgb3Z4mkf2kkIceJF6UwFaphWrN522gbrTdLmiBo6U/agbADEc9KND3zr6VR1InCZ1G4IgqXohfqQ7B0Es9OYsVJ9E6gsn5KL9JiOsPYSwZDf+Qvgq6CoAdD0sd5MniIspLXBSjkkhkzCfwKY2uLgkuwxrWBivE7NoWJhYoVYOJmsfKWHlgmo3mp7VNIF+zrioYVxsyL1CoLhjPzPteRL7mDN60wP44boaoaQfFlp7yWFEvaHZBmQgNHObeAcS3ssJTPmGYc7Zm7LQTv/7wKrsJR4I+CC3948qffxwbZI/vkkATkiJyQM3JOxoQ7v5yxc+sk7m934qZutpS6Tl+zS96EWzwBZ0nNoQ== RXΞϯςφ਺ TXΞϯςφ਺ 𝑅 𝑘 = 𝐻! 𝐸 𝑘 + 𝑛 𝑙: July 18, 2024

Slide 22

Slide 22 text

n CSI p PinLoc [sen 12], PhaseFi [wang 16], DeepFi [wang 17] ➔ n p FUSIC [jiokeng 20], SpotFi [kotaru 15] ➔ July 18, 2024 47 [sen 12] You are facing the Mona Lisa: Spot localization using PHY layer information, ACM MobiSys [wang 16] CSI phase fingerprinnting for indoor localization with a deep learning approach, IEEE Internet Things J., 3(6) [wang 17] CSI-based fingerprinting for indoor localization: A deep learrning approach, IEEE Trans. Veh. Technol., 66(1) [jiokeng 20] When FTM discovered MUSIC: Accurate WiFi-based ranging in the presence of multipath, IEEE INFOCOM [kotaru 15] SpotFi: decimeter level localization using WiFi, ACM SIGCOMM CC Review

Slide 23

Slide 23 text

48 July 18, 2024

Slide 24

Slide 24 text

July 18, 2024 49 sin ∅"# , cos ∅"# instead of ∅"# mean median max min std p2p iqr

Slide 25

Slide 25 text

July 18, 2024 50 k-means

Slide 26

Slide 26 text

n 1LDK p AP CSI dining p dining, bedroom, living Galaxy S7 edge l : 0 90cm p 10Hz 5 CSI p 51 July 18, 2024

Slide 27

Slide 27 text

n * p NH/* = NH/OP + NH/CL p */OP = NH/OP + DN/OP + LV/ OP + BD/OP July 18, 2024 52 Dataset (5 min each) Abbrv Human walking in Doors No human w/ opened doors NH/OP Opened No human w/ closed doors NH/CL Closed Dining room w/ opened doors DN/OP Dining room Opened Dining room w/ closed doors DN/CL Dining room Closed Living room w/ opened doors LV/OP Living room Opened Living room w/ closed doors LV/CL Living room Closed Bedroom w/ opened doors BD/OP Bedroom Opened Bedroom w/ closed doors BD/CL Bedroom Closed

Slide 28

Slide 28 text

n (ARI) p p −1 ≤ ARI ≤ 1 l 1 l 0 n p July 18, 2024 53 Living room Bedroom

Slide 29

Slide 29 text

1: n Win size = 10s, 𝑁!"# = 4 n IoT n 100 ARI July 18, 2024 54 Feature */OP */CL */* sin ∅!" , cos ∅!" 𝝍𝒍𝒋 sin ∅!" , cos ∅!" 𝝍𝒍𝒋 sin ∅!" , cos ∅!" 𝝍𝒍𝒋 mean 0.10 0.40 0.44 0.01 0.44 0.35 median 0.10 0.44 0.44 0.03 0.45 0.36 max 0.47 0.39 0.41 0.43 0.44 0.39 min 0.60 0.43 0.39 0.35 0.52 0.44 std 0.69 0.89 0.34 0.81 0.63 0.93 p2p 0.69 0.83 0.52 0.76 0.81 0.89 iqr 0.45 0.85 0.28 0.87 0.36 0.93

Slide 30

Slide 30 text

1: n Win size = 10s, 𝑁!"# = 4 n IoT n 100 ARI July 18, 2024 55 Feature */OP */CL */* sin ∅!" , cos ∅!" 𝝍𝒍𝒋 sin ∅!" , cos ∅!" 𝝍𝒍𝒋 sin ∅!" , cos ∅!" 𝝍𝒍𝒋 mean 0.10 0.40 0.44 0.01 0.44 0.35 median 0.10 0.44 0.44 0.03 0.45 0.36 max 0.47 0.39 0.41 0.43 0.44 0.39 min 0.60 0.43 0.39 0.35 0.52 0.44 std 0.69 0.89 0.34 0.81 0.63 0.93 p2p 0.69 0.83 0.52 0.76 0.81 0.89 iqr 0.45 0.85 0.28 0.87 0.36 0.93 CSI

Slide 31

Slide 31 text

2: n IoT n 100 ARI 56 Human location ARI 0.42 Dining room 0.27 Living room 1.00 Bedroom 0.29 Anywhere 0.95 Anywhere or no where 0.95 July 18, 2024

Slide 32

Slide 32 text

[ 23] IoT IoT CSI , IEICE CS 57 July 18, 2024

Slide 33

Slide 33 text

July 18, 2024 58 1) 0.2 0.9 … 0.1 0.8 … … … … … … 0.2 0.9 … 0.1 0.8 … … … … … … AAAB8XicbVDLSgNBEOyNr7i+oh69DIaAp7Ab4uMY8OIxgnlIsoTZyWwyZGZ2mZkVwpKv8CQoiFc/x5N/4yTZgyYWNBRV3XR3hQln2njet1PY2Nza3inuunv7B4dHpeOTto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5Hbud56o0iyWD2aa0EDgkWQRI9hY6bGfaDbIav5sUCp7VW8BtE78nJQhR3NQ+uoPY5IKKg3hWOue7yUmyLAyjHA6cyv9VNMEkwke0Z6lEguqg2xx8QxVrDJEUaxsSYMWqvtrIsNC66kIbafAZqxXvbn4n9dLTXQTZEwmqaGSLBdFKUcmRvP30ZApSgyfWoKJYvZYRMZYYWJsSK5NwV/9eZ20a1X/qnp5Xy836nkeRTiDc7gAH66hAXfQhBYQEPAMr/DmaOfFeXc+lq0FJ585hT9wPn8A7eqQXQ== 21 Subcarrier –28 std p2p iqr … Subcarrier 28 std p2p iqr AAAB8XicbVDLSgNBEOyNr7i+oh69DIaAp7Ar8XEMePEYwTwkWcLsZDYZMzO7zMwKYclXeBIUxKuf48m/cZLsQRMLGoqqbrq7woQzbTzv2ymsrW9sbhW33Z3dvf2D0uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wfDPz209UaRbLezNJaCDwULKIEWys9NBLNOtn/HHaL5W9qjcHWiV+TsqQo9EvffUGMUkFlYZwrHXX9xITZFgZRjidupVeqmmCyRgPaddSiQXVQTa/eIoqVhmgKFa2pEFz1f01kWGh9USEtlNgM9LL3kz8z+umJroOMiaT1FBJFouilCMTo9n7aMAUJYZPLMFEMXssIiOsMDE2JNem4C//vEpa51X/snpxVyvXa3keRTiBUzgDH66gDrfQgCYQEPAMr/DmaOfFeXc+Fq0FJ585hj9wPn8AnWWQ0A== lj … Time … Time Time Subcarrier –28 Subcarrier 28 … … AAAB8XicbVDLSgNBEOyNr7i+oh69DIaAp7Ab4uMY8OIxgnlIsoTZyWwyZGZ2mZkVwpKv8CQoiFc/x5N/4yTZgyYWNBRV3XR3hQln2njet1PY2Nza3inuunv7B4dHpeOTto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5Hbud56o0iyWD2aa0EDgkWQRI9hY6bGfaDbIav5sUCp7VW8BtE78nJQhR3NQ+uoPY5IKKg3hWOue7yUmyLAyjHA6cyv9VNMEkwke0Z6lEguqg2xx8QxVrDJEUaxsSYMWqvtrIsNC66kIbafAZqxXvbn4n9dLTXQTZEwmqaGSLBdFKUcmRvP30ZApSgyfWoKJYvZYRMZYYWJsSK5NwV/9eZ20a1X/qnp5Xy836nkeRTiDc7gAH66hAXfQhBYQEPAMr/DmaOfFeXc+lq0FJ585hT9wPn8A7eqQXQ== 21 AAAB8XicbVDLSgNBEOyNr7i+oh69DIaAp7Ar8XEMePEYwTwkWcLsZDYZMzO7zMwKYclXeBIUxKuf48m/cZLsQRMLGoqqbrq7woQzbTzv2ymsrW9sbhW33Z3dvf2D0uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wfDPz209UaRbLezNJaCDwULKIEWys9NBLNOtn/HHaL5W9qjcHWiV+TsqQo9EvffUGMUkFlYZwrHXX9xITZFgZRjidupVeqmmCyRgPaddSiQXVQTa/eIoqVhmgKFa2pEFz1f01kWGh9USEtlNgM9LL3kz8z+umJroOMiaT1FBJFouilCMTo9n7aMAUJYZPLMFEMXssIiOsMDE2JNem4C//vEpa51X/snpxVyvXa3keRTiBUzgDH66gDrfQgCYQEPAMr/DmaOfFeXc+Fq0FJ585hj9wPn8AnWWQ0A== lj … Feature vector 2) CSI = CSI 3) 𝑁$%&

Slide 34

Slide 34 text

n CSI p CSI n p ➔CSI ➔ CSI July 18, 2024 59 … …

Slide 35

Slide 35 text

CSI July 18, 2024 60 ... Time Device 1 Device 2 ... Device n ICA ICA i ICA j Device 1 Device 2 Device n ... ... ... ... 1) CSI (ICA) 2) ICA 3) CSI

Slide 36

Slide 36 text

: 2LDK ( ) n LAN AP 1 : Buffalo WXR-5700AX7S n IoT 9 : Raspberry Pi 3A+ ( : 0 2m) n : Intel Compute Stick n 4 (40 1 30 1 10 2 ) n CSI 24 n : 60 n 500 p ARI July 18, 2024 61 Bedroom Storeroom CL BR WC CL Living Dining Kitchen AP Data Retriever IoT Devices 2 1,3 4,6 5 7 8 9 5.3m 3.5m 2.5m 4.1m ID 1 290663 2358 2 2968 0 3 198929 2357 4 268754 2880 5 0 0 6 308506 2880 7 347484 2880 8 369627 2880 9 247124 2880

Slide 37

Slide 37 text

1. ICA ( ) 2. PCA p ICA PCA p ICA 3. p CSI ※ 𝑁$%& = 12 p >0.8 ※ July 18, 2024 62

Slide 38

Slide 38 text

: IoT n ICA 𝑁!"#$ ARI p ICA( ) 𝑁!"#$ = 1 ARI=0.943 l 𝑁1234 = 2 ARI=0.991 l 𝑁1234 ≥ 4 ARI=1.00 p PCA p 頻 Random July 18, 2024 63 0 2 4 6 8 10 Nsamp 0.7 0.8 0.9 1.0 Mean ARI ICA PCA Random 44.4%

Slide 39

Slide 39 text

n IoT IoT p CSI p 頻 n p p window p l 44.4% ARI=1.00 July 18, 2024 64

Slide 40

Slide 40 text

[joya 21] Design of room-layout estimator using smart speaker, EAI Mobiquitous [ 21] , IPSJ DICOMO 65 July 18, 2024

Slide 41

Slide 41 text

1. 2. July 18, 2024 66

Slide 42

Slide 42 text

: n p [ 09] p [okamoto 07] p 3D [ishi 13][ribeiro 10] → July 18, 2024 67 [ 09] , , 65(10) [okamoto 07] Estimation of sound source positions using a surrounding microphone array, Acoustical Science and Technol., 28(3) [ishi 13] Using multiple microphone arrays and reflections for 3D localization of sound sources, IEEE/RSJ ICIRS [ribeiro 10] IEEE Trans. Audio, Speech, Language Process., 18(7)

Slide 43

Slide 43 text

n p l → July 18, 2024 68

Slide 44

Slide 44 text

1. (4 ) 2. Sound Density Map (SDM) p 3. p 4. p 5. July 18, 2024 69 Sound Mapper Data Segmentation Clustering Room Type Estimation Steering Vector Sound Data Sound Density Map Room Angle Room Type 1 2 3 4 5

Slide 45

Slide 45 text

Sound Density Map (SDM) n MUSIC [schmidt 86] July 18, 2024 70 [schmidt 86] Multiple emitter location and signal parameter estimation, Trans. Antennas Propag., 34(3) FFT Correlation Eigen Decomposition Steering Vector Sound Data Narrow-Band AAACBnicZVBNS8NAEN34WeNX1GMvwVLwVJIi6rHQix6EiqYtNCFstpt26WYTdjdCCTl48594Ez2IV3+EF/+NmzaIbR8MPN6bYWZekFAipGX9aGvrG5tb25UdfXdv/+DQODruijjlCDsopjHvB1BgShh2JJEU9xOOYRRQ3Asm7cLvPWIuSMwe5DTBXgRHjIQEQakk36i6sbKL6azjuxGUYx5lt879TTvPfaNmNawZzFVil6QGSnR849sdxiiNMJOIQiEGtpVIL4NcEkRxrtfdVOAEogkc4YGiDEZYeNnsi9ysK2VohjFXxaQ5U/V/ExmMhJhGgeos7hTLXiH+eYurZHjlZYQlqcQMzTeFKTVlbBaZmEPCMZJ0qghEnKhrTTSGHCKpktNVDPby06uk22zYF43m3XmtZZWBVEAVnIIzYINL0ALXoAMcgMATeAFv4F171l61D+1z3rqmlTMnYAHa1y9DoZjJ PMUSIC AAACAHicZVDNSsNAGNzUvxr/ouLJy2Ip1EtJiqjHQi96ECqattCGsNlu2qW7SdjdCCX04pt4Ez2IV5/Di2/jtg1i24GFYeb7+GYnSBiVyrZ/jMLa+sbmVnHb3Nnd2z+wDo9aMk4FJi6OWSw6AZKE0Yi4iipGOokgiAeMtINRY+q3n4iQNI4e1TghHkeDiIYUI6Ul3zpp+j2O1FDw7M59uG1MKqHvnPtWya7aM8BV4uSkBHI0feu7149xykmkMENSdh07UV6GhKKYkYlZ7qWSJAiP0IB0NY0QJ9LLZvknsKyVPgxjoV+k4Ew1/21kiEs55oGenGaVy95U/PMWT6nw2stolKSKRHh+KUwZVDGctgH7VBCs2FgThAXVaSEeIoGw0p2ZugZn+dOrpFWrOpfV2v1FqW7nhRTBKTgDFeCAK1AHN6AJXIBBBl7AG3g3no1X48P4nI8WjHznGCzA+PoF5j6VHA== PMUSIC(f1) AAACAHicZVDNSsNAGNzUvxr/ouLJy2Ip1EtJiqjHQi96ECqattCGsNlu2qW7SdjdCCX04pt4Ez2IV5/Di2/jtg1i24GFYeb7+GYnSBiVyrZ/jMLa+sbmVnHb3Nnd2z+wDo9aMk4FJi6OWSw6AZKE0Yi4iipGOokgiAeMtINRY+q3n4iQNI4e1TghHkeDiIYUI6Ul3zpp+j2O1FDw7M59uG1MKqFfO/etkl21Z4CrxMlJCeRo+tZ3rx/jlJNIYYak7Dp2orwMCUUxIxOz3EslSRAeoQHpahohTqSXzfJPYFkrfRjGQr9IwZlq/tvIEJdyzAM9Oc0ql72p+OctnlLhtZfRKEkVifD8UpgyqGI4bQP2qSBYsbEmCAuq00I8RAJhpTszdQ3O8qdXSatWdS6rtfuLUt3OCymCU3AGKsABV6AObkATuACDDLyAN/BuPBuvxofxOR8tGPnOMViA8fUL58WVHQ== PMUSIC(f2) … AAACAHicZVDLSsNAFJ3UV42vqLhyM1gKFaQkRdRlwY3LCvYBTSiT6aQdOnkwcyOU0I1/4k50IW79Djf+jZM2iLUHBg7n3Ms9c/xEcAW2/W2U1tY3NrfK2+bO7t7+gXV41FFxKilr01jEsucTxQSPWBs4CNZLJCOhL1jXn9zmfveRScXj6AGmCfNCMop4wCkBLQ2sEzckMPaDjMxqLowZkAscnA+sil2358CrxClIBRVoDawvdxjTNGQRUEGU6jt2Al5GJHAq2MysuqliCaETMmJ9TSMSMuVl8/wzXNXKEAex1C8CPFfNPxsZCZWahr6ezNOq/14u/nrLpyC48TIeJSmwiC4uBanAEOO8DTzkklEQU00IlVynxXRMJKGgOzN1Dc7/T6+STqPuXNUb95eVpl0UUkan6AzVkIOuURPdoRZqI4oy9Ixe0ZvxZLwY78bHYrRkFDvHaAnG5w9XQ5Vk a(✓, f) AAAB+3icZVDLSsNAFL3xWeMr6tLNYClUkJIUUZcFNy4r2Ae0oUymk3bo5MHMpFhC/sSd6ELc+idu/BsnbRDbHhg4nHMv98zxYs6ksu0fY2Nza3tnt7Rn7h8cHh1bJ6dtGSWC0BaJeCS6HpaUs5C2FFOcdmNBceBx2vEm97nfmVIhWRQ+qVlM3QCPQuYzgpWWBpbVD7Aae376nFX9K6QuB1bZrtlzoHXiFKQMBZoD67s/jEgS0FARjqXsOXas3BQLxQinmVnpJ5LGmEzwiPY0DXFApZvOo2eoopUh8iOhX6jQXDX/baQ4kHIWeHoyDypXvVz885ZPKf/OTVkYJ4qGZHHJTzhSEcqLQEMmKFF8pgkmgum0iIyxwETpukxdg7P66XXSrtecm1r98brcsItCSnAOF1AFB26hAQ/QhBYQmMILvMG7kRmvxofxuRjdMIqdM1iC8fULlDyTSw== x(f, t) AAAB9nicZVDLSsNAFL3xWeOr6tLNYCnUTUmKqMuCG5dV7APaUCbTSTt0MokzE7GEfoc70YW49WPc+DdO2iC2PTBwOOde7pnjx5wp7Tg/1tr6xubWdmHH3t3bPzgsHh23VJRIQpsk4pHs+FhRzgRtaqY57cSS4tDntO2PbzK//USlYpF40JOYeiEeChYwgrWRvF6I9cgP0vtpJTjvF0tO1ZkBrRI3JyXI0egXv3uDiCQhFZpwrFTXdWLtpVhqRjid2uVeomiMyRgPaddQgUOqvHSWeorKRhmgIJLmCY1mqv1vI8WhUpPQN5NZSrXsZeKft3hKB9deykScaCrI/FKQcKQjlHWABkxSovnEEEwkM2kRGWGJiTZN2aYGd/nTq6RVq7qX1drdRanu5IUU4BTOoAIuXEEdbqEBTSDwCC/wBu/Ws/VqfVif89E1K985gQVYX78+dJIW R(f) AAAB+nicZVDLSsNAFL3xWeOjUZdugqVQNyUpoi4LIrisYB/QhjCZTtqhk0mYmQgl9kvciS7ErZ/ixr9x0gax7YGBwzn3cs+cIGFUKsf5MTY2t7Z3dkt75v7B4VHZOj7pyDgVmLRxzGLRC5AkjHLSVlQx0ksEQVHASDeY3OZ+94kISWP+qKYJ8SI04jSkGCkt+VZ5ECE1DsLsbubzWnjhWxWn7sxhrxO3IBUo0PKt78EwxmlEuMIMSdl3nUR5GRKKYkZmZnWQSpIgPEEj0teUo4hIL5snn9lVrQztMBb6cWXPVfPfRoYiKadRoCfznHLVy8U/b/mUCm+8jPIkVYTjxaUwZbaK7bwHe0gFwYpNNUFYUJ3WxmMkEFa6LVPX4K5+ep10GnX3qt54uKw0naKQEpzBOdTAhWtowj20oA0YUniBN3g3no1X48P4XIxuGMXOKSzB+PoFL6uTGw== En(f) AAACAHicZVDNSsNAGNzUvxr/ouLJy2Ip1EtJiqjHQi96ECqattCWsNlu2qW7SdjdCCX04pt4Ez2IV5/Di2/jpg1i24GFYeb7+GbHjxmVyrZ/jMLa+sbmVnHb3Nnd2z+wDo9aMkoEJi6OWCQ6PpKE0ZC4iipGOrEgiPuMtP1xI/PbT0RIGoWPahKTPkfDkAYUI6Ulzzppej2O1Ejw9M59uG1MK4E3Pveskl21Z4CrxMlJCeRoetZ3bxDhhJNQYYak7Dp2rPopEopiRqZmuZdIEiM8RkPS1TREnMh+Oss/hWWtDGAQCf1CBWeq+W8jRVzKCff1ZJZVLnuZ+OctnlLBdT+lYZwoEuL5pSBhUEUwawMOqCBYsYkmCAuq00I8QgJhpTszdQ3O8qdXSatWdS6rtfuLUt3OCymCU3AGKsABV6AObkATuACDFLyAN/BuPBuvxofxOR8tGPnOMViA8fULPuOVVg== PMUSIC(fk) Narrow-Band Narrow-Band Wide-Band Frequency Component Correlation Matirx Noise Eigen Vector AAAB6nicZVBNS8NAEJ3Urxq/qh69BEvBU0mKqMeCFy9CC/YD2lA220m7dLMJuxuhhP4Cb6IH8epP8uK/cdsGse2Dgcd7M8zMCxLOlHbdH6uwtb2zu1fctw8Oj45PSqdnbRWnkmKLxjyW3YAo5ExgSzPNsZtIJFHAsRNM7ud+5xmlYrF40tME/YiMBAsZJdpIzcdBqexW3QWcTeLlpAw5GoPSd38Y0zRCoSknSvU8N9F+RqRmlOPMrvRThQmhEzLCnqGCRKj8bHHpzKkYZeiEsTQltLNQ7X8TGYmUmkaB6YyIHqt1by7+eaurdHjnZ0wkqUZBl5vClDs6duZ/O0MmkWo+NYRQycy1Dh0TSag26dgmBm/96U3SrlW9m2qteV2uu3kgRbiAS7gCD26hDg/QgBZQQHiBN3i3uPVqfVify9aClc+cwwqsr1+Fio0c M Microphones MUSIC Sound Density Map (SDM)

Slide 46

Slide 46 text

Sound Density Map (SDM) n MUSIC [schmidt 86] July 18, 2024 71 [schmidt 86] Multiple emitter location and signal parameter estimation, Trans. Antennas Propag., 34(3) FFT Correlation Eigen Decomposition Steering Vector Sound Data Narrow-Band AAACBnicZVBNS8NAEN34WeNX1GMvwVLwVJIi6rHQix6EiqYtNCFstpt26WYTdjdCCTl48594Ez2IV3+EF/+NmzaIbR8MPN6bYWZekFAipGX9aGvrG5tb25UdfXdv/+DQODruijjlCDsopjHvB1BgShh2JJEU9xOOYRRQ3Asm7cLvPWIuSMwe5DTBXgRHjIQEQakk36i6sbKL6azjuxGUYx5lt879TTvPfaNmNawZzFVil6QGSnR849sdxiiNMJOIQiEGtpVIL4NcEkRxrtfdVOAEogkc4YGiDEZYeNnsi9ysK2VohjFXxaQ5U/V/ExmMhJhGgeos7hTLXiH+eYurZHjlZYQlqcQMzTeFKTVlbBaZmEPCMZJ0qghEnKhrTTSGHCKpktNVDPby06uk22zYF43m3XmtZZWBVEAVnIIzYINL0ALXoAMcgMATeAFv4F171l61D+1z3rqmlTMnYAHa1y9DoZjJ PMUSIC AAACAHicZVDNSsNAGNzUvxr/ouLJy2Ip1EtJiqjHQi96ECqattCGsNlu2qW7SdjdCCX04pt4Ez2IV5/Di2/jtg1i24GFYeb7+GYnSBiVyrZ/jMLa+sbmVnHb3Nnd2z+wDo9aMk4FJi6OWSw6AZKE0Yi4iipGOokgiAeMtINRY+q3n4iQNI4e1TghHkeDiIYUI6Ul3zpp+j2O1FDw7M59uG1MKqHvnPtWya7aM8BV4uSkBHI0feu7149xykmkMENSdh07UV6GhKKYkYlZ7qWSJAiP0IB0NY0QJ9LLZvknsKyVPgxjoV+k4Ew1/21kiEs55oGenGaVy95U/PMWT6nw2stolKSKRHh+KUwZVDGctgH7VBCs2FgThAXVaSEeIoGw0p2ZugZn+dOrpFWrOpfV2v1FqW7nhRTBKTgDFeCAK1AHN6AJXIBBBl7AG3g3no1X48P4nI8WjHznGCzA+PoF5j6VHA== PMUSIC(f1) AAACAHicZVDNSsNAGNzUvxr/ouLJy2Ip1EtJiqjHQi96ECqattCGsNlu2qW7SdjdCCX04pt4Ez2IV5/Di2/jtg1i24GFYeb7+GYnSBiVyrZ/jMLa+sbmVnHb3Nnd2z+wDo9aMk4FJi6OWSw6AZKE0Yi4iipGOokgiAeMtINRY+q3n4iQNI4e1TghHkeDiIYUI6Ul3zpp+j2O1FDw7M59uG1MKqFfO/etkl21Z4CrxMlJCeRo+tZ3rx/jlJNIYYak7Dp2orwMCUUxIxOz3EslSRAeoQHpahohTqSXzfJPYFkrfRjGQr9IwZlq/tvIEJdyzAM9Oc0ql72p+OctnlLhtZfRKEkVifD8UpgyqGI4bQP2qSBYsbEmCAuq00I8RAJhpTszdQ3O8qdXSatWdS6rtfuLUt3OCymCU3AGKsABV6AObkATuACDDLyAN/BuPBuvxofxOR8tGPnOMViA8fUL58WVHQ== PMUSIC(f2) … AAACAHicZVDLSsNAFJ3UV42vqLhyM1gKFaQkRdRlwY3LCvYBTSiT6aQdOnkwcyOU0I1/4k50IW79Djf+jZM2iLUHBg7n3Ms9c/xEcAW2/W2U1tY3NrfK2+bO7t7+gXV41FFxKilr01jEsucTxQSPWBs4CNZLJCOhL1jXn9zmfveRScXj6AGmCfNCMop4wCkBLQ2sEzckMPaDjMxqLowZkAscnA+sil2358CrxClIBRVoDawvdxjTNGQRUEGU6jt2Al5GJHAq2MysuqliCaETMmJ9TSMSMuVl8/wzXNXKEAex1C8CPFfNPxsZCZWahr6ezNOq/14u/nrLpyC48TIeJSmwiC4uBanAEOO8DTzkklEQU00IlVynxXRMJKGgOzN1Dc7/T6+STqPuXNUb95eVpl0UUkan6AzVkIOuURPdoRZqI4oy9Ixe0ZvxZLwY78bHYrRkFDvHaAnG5w9XQ5Vk a(✓, f) AAAB+3icZVDLSsNAFL3xWeMr6tLNYClUkJIUUZcFNy4r2Ae0oUymk3bo5MHMpFhC/sSd6ELc+idu/BsnbRDbHhg4nHMv98zxYs6ksu0fY2Nza3tnt7Rn7h8cHh1bJ6dtGSWC0BaJeCS6HpaUs5C2FFOcdmNBceBx2vEm97nfmVIhWRQ+qVlM3QCPQuYzgpWWBpbVD7Aae376nFX9K6QuB1bZrtlzoHXiFKQMBZoD67s/jEgS0FARjqXsOXas3BQLxQinmVnpJ5LGmEzwiPY0DXFApZvOo2eoopUh8iOhX6jQXDX/baQ4kHIWeHoyDypXvVz885ZPKf/OTVkYJ4qGZHHJTzhSEcqLQEMmKFF8pgkmgum0iIyxwETpukxdg7P66XXSrtecm1r98brcsItCSnAOF1AFB26hAQ/QhBYQmMILvMG7kRmvxofxuRjdMIqdM1iC8fULlDyTSw== x(f, t) AAAB9nicZVDLSsNAFL3xWeOr6tLNYCnUTUmKqMuCG5dV7APaUCbTSTt0MokzE7GEfoc70YW49WPc+DdO2iC2PTBwOOde7pnjx5wp7Tg/1tr6xubWdmHH3t3bPzgsHh23VJRIQpsk4pHs+FhRzgRtaqY57cSS4tDntO2PbzK//USlYpF40JOYeiEeChYwgrWRvF6I9cgP0vtpJTjvF0tO1ZkBrRI3JyXI0egXv3uDiCQhFZpwrFTXdWLtpVhqRjid2uVeomiMyRgPaddQgUOqvHSWeorKRhmgIJLmCY1mqv1vI8WhUpPQN5NZSrXsZeKft3hKB9deykScaCrI/FKQcKQjlHWABkxSovnEEEwkM2kRGWGJiTZN2aYGd/nTq6RVq7qX1drdRanu5IUU4BTOoAIuXEEdbqEBTSDwCC/wBu/Ws/VqfVif89E1K985gQVYX78+dJIW R(f) AAAB+nicZVDLSsNAFL3xWeOjUZdugqVQNyUpoi4LIrisYB/QhjCZTtqhk0mYmQgl9kvciS7ErZ/ixr9x0gax7YGBwzn3cs+cIGFUKsf5MTY2t7Z3dkt75v7B4VHZOj7pyDgVmLRxzGLRC5AkjHLSVlQx0ksEQVHASDeY3OZ+94kISWP+qKYJ8SI04jSkGCkt+VZ5ECE1DsLsbubzWnjhWxWn7sxhrxO3IBUo0PKt78EwxmlEuMIMSdl3nUR5GRKKYkZmZnWQSpIgPEEj0teUo4hIL5snn9lVrQztMBb6cWXPVfPfRoYiKadRoCfznHLVy8U/b/mUCm+8jPIkVYTjxaUwZbaK7bwHe0gFwYpNNUFYUJ3WxmMkEFa6LVPX4K5+ep10GnX3qt54uKw0naKQEpzBOdTAhWtowj20oA0YUniBN3g3no1X48P4XIxuGMXOKSzB+PoFL6uTGw== En(f) AAACAHicZVDNSsNAGNzUvxr/ouLJy2Ip1EtJiqjHQi96ECqattCWsNlu2qW7SdjdCCX04pt4Ez2IV5/Di2/jpg1i24GFYeb7+GbHjxmVyrZ/jMLa+sbmVnHb3Nnd2z+wDo9aMkoEJi6OWCQ6PpKE0ZC4iipGOrEgiPuMtP1xI/PbT0RIGoWPahKTPkfDkAYUI6Ulzzppej2O1Ejw9M59uG1MK4E3Pveskl21Z4CrxMlJCeRoetZ3bxDhhJNQYYak7Dp2rPopEopiRqZmuZdIEiM8RkPS1TREnMh+Oss/hWWtDGAQCf1CBWeq+W8jRVzKCff1ZJZVLnuZ+OctnlLBdT+lYZwoEuL5pSBhUEUwawMOqCBYsYkmCAuq00I8QgJhpTszdQ3O8qdXSatWdS6rtfuLUt3OCymCU3AGKsABV6AObkATuACDFLyAN/BuPBuvxofxOR8tGPnOMViA8fULPuOVVg== PMUSIC(fk) Narrow-Band Narrow-Band Wide-Band Frequency Component Correlation Matirx Noise Eigen Vector AAAB6nicZVBNS8NAEJ3Urxq/qh69BEvBU0mKqMeCFy9CC/YD2lA220m7dLMJuxuhhP4Cb6IH8epP8uK/cdsGse2Dgcd7M8zMCxLOlHbdH6uwtb2zu1fctw8Oj45PSqdnbRWnkmKLxjyW3YAo5ExgSzPNsZtIJFHAsRNM7ud+5xmlYrF40tME/YiMBAsZJdpIzcdBqexW3QWcTeLlpAw5GoPSd38Y0zRCoSknSvU8N9F+RqRmlOPMrvRThQmhEzLCnqGCRKj8bHHpzKkYZeiEsTQltLNQ7X8TGYmUmkaB6YyIHqt1by7+eaurdHjnZ0wkqUZBl5vClDs6duZ/O0MmkWo+NYRQycy1Dh0TSag26dgmBm/96U3SrlW9m2qteV2uu3kgRbiAS7gCD26hDg/QgBZQQHiBN3i3uPVqfVify9aClc+cwwqsr1+Fio0c M Microphones MUSIC

Slide 47

Slide 47 text

: n SDM DBSCAN p SDM → OK July 18, 2024 72

Slide 48

Slide 48 text

: n p k-means l k ( ) → = July 18, 2024 73 OK

Slide 49

Slide 49 text

n p Random Forest July 18, 2024 74 [ 11] ActivityAnalyzer, ([ 11] ) MFCC Room 2 Room 1 Windowing RFC MUSIC =1 OK

Slide 50

Slide 50 text

n p AZDEN SGM-990 x4 , Behringer UMC404HD p 5cm, 70cm p [email protected] July 18, 2024 75 Kitchen Bedroom Living Room Washroom Bathroom Microphones 270cm 350cm 258cm 258cm 350cm 166cm ( 40 ×20) 1: A 2: B DS (10 ) (10 ) (10 ) (10 ) DS DS DS

Slide 51

Slide 51 text

1: n p ARI( ) n p July 18, 2024 76 Kitchen Bedroom Living Room Washroom Bathroom Microphones 270cm 350cm 258cm 258cm 350cm 166cm ARI DS 0.897 0.783 DS 0.327 0.683 DS 0.746 0.967 DS 0.925 0.967 全データ 0.725 0.850 3

Slide 52

Slide 52 text

2: n p 3 p 120 @ n p 1 p 30 @ July 18, 2024 77 , ( , ), , , , , , , , 学習データに含まれる⾏動 規定⾏動 , , , ⾃由⾏動 living kitchen bedroom Predicted Class living kitchen bedroom Actual Class 0.867 0.133 0.000 0.133 0.867 0.000 0.000 1.000 0.000 living kitchen bedroom Predicted Class living kitchen bedroom Actual Class 0.736 0.264 0.000 0.250 0.750 0.000 0.000 0.361 0.639 0.714

Slide 53

Slide 53 text

n IoT p p p n p : ARI=0.725 p : 0.850 p : 0.714 July 18, 2024 78

Slide 54

Slide 54 text

79 July 18, 2024

Slide 55

Slide 55 text

n IoT p IoT p IoT p n p CSI IoT p n p : [email protected] p Web: https://pman0214.netlify.app/ July 18, 2024 80

Slide 56

Slide 56 text

© 2024 Shigemi ISHIDA, distributed under CC BY-NC 4.0