Slide 1

Slide 1 text

Integrated Nanophotonics Dmitry Yu. Fedyanin Laboratory of Nanooptics and Plasmonics, MIPT Lecture 6: Photonic Resonators and Filters

Slide 2

Slide 2 text

2 FABRY-PEROT RESONATOR 2k n 1 d cosθ2 −ϕ21 −ϕ23 =2π N ,N=0,1,2,3,...

Slide 3

Slide 3 text

3 FABRY-PEROT RESONATOR TE wave n 1 = n 3 = 1.4 (SiO 2 ) n 2 = 3 (semiconductor) d = 20 μm λ = 1550 nm 2k n 1 d cosθ2 −ϕ21 −ϕ23 =2π N , N=0,1,2,3,...

Slide 4

Slide 4 text

4 FABRY-PEROT RESONATOR n 1 = n 3 = 1.4 (SiO 2 ) n 2 = 3 (semiconductor) d = 20 μm λ = 1550 nm

Slide 5

Slide 5 text

5 FABRY-PEROT RESONATOR n 1 = n 3 = 1.4 (SiO 2 ) n 2 = 3 (semiconductor) d = 20 μm λ = 1550 nm

Slide 6

Slide 6 text

6 FABRY-PEROT RESONATOR n 1 = n 3 = 1.4 (SiO 2 ) n 2 = 3 (semiconductor) d = 3 μm λ = 1550 nm

Slide 7

Slide 7 text

7 FABRY-PEROT RESONATOR n 1 = n 3 = 1.4 (SiO 2 ) n 2 = 3 (semiconductor) d = 3 μm λ = 1550 nm Problems: 1. Resonance peaks are not sharp. 2. There is no spectral spacing between peaks. 3. High background level.

Slide 8

Slide 8 text

8 FABRY-PEROT RESONATOR TE wave n 1 = n 3 = 1.4 (SiO 2 ) n 2 = 3 (semiconductor) d = 20 μm λ = 1550 nm High reflectance at large angles due to the high reflection coefficients at the interfaces!

Slide 9

Slide 9 text

9 FABRY-PEROT RESONATOR n 1 = n 3 = 1.4 (SiO 2 ) n 2 = 3 (semiconductor) d = 3 μm λ = 1550 nm Problems: 1. Resonance peaks are not sharp. 2. There is no spectral spacing between peaks. 3. High background level.

Slide 10

Slide 10 text

10 FABRY-PEROT RESONATOR n 1 = n 3 = 1.4 (SiO 2 ) n 2 = 3 (semiconductor) mirror thickness = 20 nm d = 3 μm λ = 1550 nm Mirror reflectance is as high as 90%.

Slide 11

Slide 11 text

11 FABRY-PEROT RESONATOR n 1 = n 3 = 1.4 (SiO 2 ) n 2 = 3 (semiconductor) mirror thickness = 20 nm d = 3 μm λ = 1550 nm Losses in the metal decrease the mirror reflectance from 90% to 80%. The absor- bance is higher than the transmittance and reflectance. Therefore Bragg (DBR) reflectors are preferred when possible.

Slide 12

Slide 12 text

12 FABRY-PEROT RESONATOR What is inside the resonator? Try to evaluate the intensity of electromagnetic field inside the resonator using this plot and the values of the reflectance (80%) and transmittance (10%) of the metal mirrors. n 1 = n 3 = 1.4 (SiO 2 ) n 2 = 3 (semiconductor) mirror thickness = 20 nm d = 3 μm

Slide 13

Slide 13 text

13 FABRY-PEROT RESONATOR What is inside the resonator? A 2 B 2 A 3 T M = 0.1; |r M |2 = 0.8 | ⟹ t M |≈ 0.46; |r M | ≈ 0.9 A 2 = A 3 / t M | ⟹ A 2 | = 2.16 |A 3 | B 2 = A 3 r M / t M | ⟹ B 2 | = 1.93 |A 3 | max|E cavity | max[ ∝ A 2 sin(...) + B 2 sin(...)] ≈ 4|A 3 | |A 3 |2 = 0.36 max|E cavity |2 ≈ 5.8 |E incident |2

Slide 14

Slide 14 text

15 FABRY-PEROT RESONATOR Silicon waveguide with DBR mirrors M.W. Pruessner, T.H. Stievater, W.S. Rabinovich, Opt. Lett. 32, 533 (2007). Resonator based on a photonic crystal P. Velha et al., Ultra-High Q/V Fabry-Perot microcavity on SOI substrate, Opt. Express 15, 16090 (2007).

Slide 15

Slide 15 text

16 FABRY-PEROT LASER exp(2g L−2α L)R front R back ≃1 g≃α + 1 2 L log( 1 R front R back ) Common laser diode VCSEL Figures: www.photonics.com

Slide 16

Slide 16 text

17 FABRY-PEROT LASER -K. Takeda et al., Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers, Nat. Photon. 7, 569–575 (2013). -K. Takeda et al., Heterogeneously integrated photonic-crystal lasers on silicon for on-off chip optical interconnects, Opt. Express 22, 702 (2015). Photonic-crystal on-chip laser

Slide 17

Slide 17 text

18 FABRY-PEROT LASER Electrically pumped metal coated nanolaser -K. Ding et al., Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature, Opt. Express 21, 4728 (2013).

Slide 18

Slide 18 text

19 FABRY-PEROT LASER Electrically pumped plasmonic nanolaser -D.Yu. Fedyanin, Toward an electrically pumped spaser, Optics Letters 37, 404-406 (2012).

Slide 19

Slide 19 text

20 RING RESONATOR

Slide 20

Slide 20 text

21 RING RESONATOR

Slide 21

Slide 21 text

22 RING RESONATOR -W. R. McKinnon et al., Extracting coupling and loss coefficients from a ring resonator, Opt. Express 17, 18971 (2009). ‖B D ‖=‖t WG κWR κRW t R ‖×‖A C ‖

Slide 22

Slide 22 text

23 RING RESONATOR ‖B D ‖=‖t WG κWR κRW t R ‖×‖A C ‖ C=D exp(iβ 2π R)=a Dexp(iθ) a=exp(−Imβ 2π R) θ=β 2π R t R =t WG * =t* κWR =−κRW * =−κ* |t |2 +| κ|2 =1 -A. Yariv, Universal relations for coupling of optical power between microresonators and dielectric waveguides, Electronic Lett. 36, 321 (2000). -W. R. McKinnon et al., Extracting coupling and loss coefficients from a ring resonator, Opt. Express 17, 18971 (2009).

Slide 23

Slide 23 text

24 RING RESONATOR ‖B D ‖=‖t WG κWR κRW t R ‖×‖A C ‖ C=D exp(iβ 2π R)=a Dexp(iθ) a=exp(−Imβ 2π R) θ=β 2π R t R =t WG * =t* κWR =−κRW * =−κ* |t |2 +| κ|2 =1 B= −a+t exp(−i θ) −at* +exp(−iθ) C= −a κ* −at* +exp(−iθ) D= −κ* 1−at exp(iθ)

Slide 24

Slide 24 text

25 RING RESONATOR B= −a+t exp(−i θ) −at* +exp(−iθ) C= −a κ* −at* +exp(−iθ) D= −κ* 1−at exp(iθ) T=| B|2 = a2 +|t |2 −2a|t |cos(θ−ϕt ) 1+a2 |t |2 −2a|t |cos(θ−ϕt ) | D |2 = a2 (1−|t |) 1+a2|t |2 −2a|t |cos(θ+ϕt ) | A |2 =1

Slide 25

Slide 25 text

26 RING RESONATOR T=| B|2 = a2 +|t |2 −2a|t |cos(θ−ϕt ) 1+a2 |t |2 −2a|t |cos(θ−ϕt ) λ = 1550 nm; n eff = 2; R = 5 μm; a2 = 0.64; |t|2 = 0.81

Slide 26

Slide 26 text

27 RING RESONATOR T=| B|2 = a2 +|t |2 −2a|t |cos(θ−ϕt ) 1+a2 |t |2 −2a|t |cos(θ−ϕt ) λ = 1550 nm; n eff = 2; R = 5 μm; a2 = |t|2 = 0.81 Transmittance goes to zero

Slide 27

Slide 27 text

28 RING RESONATOR T=| B|2 = a2 +|t |2 −2a|t |cos(θ−ϕt ) 1+a2 |t |2 −2a|t |cos(θ−ϕt ) λ = 1550 nm; n eff = 2; R = 5 μm; a2 = 0.9, 0.7, 0.5; |t|2 = 0.81 a2

Slide 28

Slide 28 text

29 RING RESONATOR T=| B|2 = a2 +|t |2 −2a|t |cos(θ−ϕt ) 1+a2 |t |2 −2a|t |cos(θ−ϕt ) λ = 1550 nm; n eff = 2; R = 5 μm; a2 = 0.64; |t|2 = 0.9, 0.8, 0.5 |t|2

Slide 29

Slide 29 text

30 RING RESONATOR −T=| B|2 = a2 +|t |2 −2a|t |cos(θ−ϕt ) 1+a2 |t |2 −2a|t |cos(θ−ϕt ) λ = 1550 nm; n eff = 2; R = 5.01, 5.02, 5.03 μm; a2 = 0.64; |t|2 = 0.81 θ=2π Rβ

Slide 30

Slide 30 text

31 RING RESONATOR MODULATOR T=|B|2 = a2 +|t |2 −2a|t |cos(θ−ϕt ) 1+a2 |t |2 −2a|t |cos(θ−ϕt ) λ = 1550 nm; n eff = 2; R = 5 μm; a2 = 0.64; |t|2 = 0.81 ΔL = 1 μm;

Slide 31

Slide 31 text

32 RING RESONATOR MODULATOR -Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, Micrometre-scale silicon electro-optic modulator, Nature 435, 325–327 (2005). They fabricated the p-i-n ring resonator on a silicon- on-insulator substrate with a 3-µm-thick buried oxide layer. Both the waveguide coupling to the ring and that forming the ring had a width of 450 nm and a height of 250 nm. The diameter of the ring is 12 µm, and the spacing between the ring and the straight waveguide was 200 nm.

Slide 32

Slide 32 text

33 RING RESONATOR MODULATOR -Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, Micrometre-scale silicon electro-optic modulator, Nature 435, 325–327 (2005). quality factor Q = λ/Δλ = 39 350 photon lifetime of τ cav = λ2/(2πcΔλ) = 33 ps The resonance is blue-shifted owing to the lowering of n eff caused by the increase of the electron–hole pair density in the cavity

Slide 33

Slide 33 text

34 RING RESONATOR MODULATOR -Z. Peng, D. Fattal, M. Fiorentino, R. Beausoleil, CMOS-Compatible Microring Modulators for Nanophotonic Interconnect, Integrated Photonics Research, Silicon and Nanophotonics 2010, DOI: 10.1364/IPRSN.2010.IWA2 6 Gb/s, 45 fJ per bit

Slide 34

Slide 34 text

35 RING RESONATOR MODULATOR -Z. Peng, D. Fattal, M. Fiorentino, R. Beausoleil, CMOS- Compatible Microring Modulators for Nanophotonic Interconnect, DOI: 10.1364/IPRSN.2010.IWA2

Slide 35

Slide 35 text

36 ADD-DROP FILTER α=α1/2 2 ; θ =2θ1/2 At resonance:

Slide 36

Slide 36 text

38 RING RESONATOR INTEGRATED LASER

Slide 37

Slide 37 text

40 NEXT CLASS Numerical simulation of optical waveguides and resonators. Homework: Article mentioned in the presentation D. G. Rabus, Integrated Ring Resonators: The Compendium, Springer Series in Optical Sciences, Springer, 2007. Chapter 2 S. L. Chuang, Physics of Photonic Devices, Wiley, 2009. Section 8.4