Slide 1

Slide 1 text

Athens: Heuristic Optimization Other optimization techniques Oscar Cubo Medina ([email protected])

Slide 2

Slide 2 text

Outline 1.  Ant Colony Optimization 2.  Cultural Algorithms 3.  Memetic Algorithms

Slide 3

Slide 3 text

ACO: Ant Colony Optimization l  Based on the behaviour of real ants l  The key concept is pheromone l  Multi-agent system l  Each agent is an artificial ant l  All ants collaborate in the generation of the solution

Slide 4

Slide 4 text

ACO: Example E A F B Nest Food C D 2 2 4 4 2 2 2 2 5 2 4 5 2

Slide 5

Slide 5 text

ACO: Example E A Nest C 2 2 4 ( ) ( ) 1 1 0 i ij ij i k ij ij j N ij i d j N p d j N β α β α τ τ ∈ ⎧ ⎛ ⎞ ⎪ ×⎜ ⎟ ⎜ ⎟ ⎪ ⎝ ⎠ ∈ ⎪ ⎛ ⎞ = ⎛ ⎞ ⎨ ⎜ ⎟ ×⎜ ⎟ ⎪ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎪ ⎝ ⎠ ⎪ ∉ ⎩ ∑ Arc Prob Nest A 2/5 Nest C 1/5 Nest E 2/5

Slide 6

Slide 6 text

ACO: Example E A F B Nest Food C D 2 2 4 4 2 2 2 2 5 2 4 5 2 ( ) ( ) 1 ij ij t t τ τ τ + = + Δ

Slide 7

Slide 7 text

ACO: Example E A F B Nest Food C D 2 2 4 4 2 2 2 2 5 2 4 5 2

Slide 8

Slide 8 text

ACO: Example E A F B Nest Food C D 2 2 4 4 2 2 2 2 5 2 4 5 2

Slide 9

Slide 9 text

ACO: Example E A F B Nest Food C D 2 2 4 4 2 2 2 2 5 2 4 5 2 Ant 1: 15

Slide 10

Slide 10 text

ACO: Example E A F B Nest Food C D 2 2 4 4 2 2 2 2 5 2 4 5 2 Ant 1: 15 Ant 2: 11

Slide 11

Slide 11 text

ACO: Example E A F B Nest Food C D 2 2 4 4 2 2 2 2 5 2 4 5 2 Ant 1: 15 Ant 2: 11 Ant 3: 12

Slide 12

Slide 12 text

ACO: Requirements l  Finite set of components (nodes) l  Finite set of transitions between the components (arcs) l  Assigned a cost for each transition l  Existence of neighbourhood l  Solutions are a sequence of components l  Each solution has a cost (sum of the costs of the arcs)

Slide 13

Slide 13 text

Cultural Algorithms l  Based on the learning of culture l  Two spaces: l  Population Space l  Belief Space l  Communication between spaces: l  Best individuals of population influences in belief space l  The belief space influences the generation of new individuals

Slide 14

Slide 14 text

CA: Pseudocode cultural_algorithm p = create_population(); b = create_beliefs(); for(t=0;end condition; t++) { fitness = evaluate(p); b = update(b,accept(p)); p = envolve(p, influence(b)); } // for

Slide 15

Slide 15 text

CA: Types of beliefs l  Normative: Best ranges for variables l  Situational: Set of examples l  Topographical: Best individuals of each zone l  Domain: Knowledge about the problem that guides the search l  Historical or temporal: Records the principal events

Slide 16

Slide 16 text

Memetic Algorithms l  Hybrid population based algorithms l  Local Search + Crossover operators l  Faster than Genetic Algorithms l  Also called: Parallel Genetic Algorithms, Genetic Local Search…

Slide 17

Slide 17 text

Memetic Algorithms l  Genetic algorithm but: l  Individuals (called agents) has a internal local search optimization l  Convergence of population implies a restart procedure l  New operators definitions: l Cross l Mutation l Meta-mutation: local search

Slide 18

Slide 18 text

Memetic Algorithms memetic_algorithm() p = create_population(); do { p = envolve(p); if convergence(p) { p = restart_population(p); } // if } until (convergence_ma);

Slide 19

Slide 19 text

Memetic Algorithms create_population(p) for(i=BEST+1;i