Slide 1

Slide 1 text

ετϦʔτεφοϓσʔλʹ
 ౷ܭతωοτϫʔΫ෼ੳͷద༻ΛࢼΈͨ 5PLZP3
 !TBMUDPPLZ

Slide 2

Slide 2 text

୭ʁ • !TBMUDPPLZ • 3ྺɿ೥͙Β͍͔ͳ • ۈઌɿݪ॓ʹ͋Δ*5ܥͷձࣾ • ࢓ࣄ಺༰ɿ3%తͳ෦ॺͰ3Λ࢖ͬͨ
 ɾσʔλ෼ੳ ׂ 
 ɾػցֶश ׂ 
 ɾલॲཧ ׂ  • झຯɿ෰ϑΝογϣϯඒज़ؗ८Γ

Slide 3

Slide 3 text

ωοτϫʔΫ෼ੳͱ͸ ਓؒؔ܎ɺاۀؒͷؔ܎ɺੜ෺ؒͷؔ܎ɺίϯϐϡʔλωοτϫʔΫ ͳͲͷؔ܎΍ߏ଄Λ෼ੳ͢Δάϥϑཧ࿦Λϕʔεͱͨ͠෼ੳख๏ (ग़య : https://www.slideshare.net/kashitan/tidygraphggraph) (https://www.amazon.co.jp/exec/obidos/ASIN/4320019288) ͜ΕͰษڧ͠·ͨ͠ ࠷ۙͷTokyoRͩͱ
 @kashitan ͞Μ͕ ൃදͨ͠Γͯͨ͠

Slide 4

Slide 4 text

ωοτϫʔΫ෼ੳ Α͋͘Δͷ͸ωοτϫʔΫͷࢦඪͷࢉग़΍ߏ଄ͷநग़ - த৺ੑ
 ͲͷΑ͏ͳਓ͕த৺తͳਓ෺͔ - ίϛϡχςΟநग़
 ͲͷΑ͏ͳάϧʔϓʹ෼͔Ε͍ͯΔ͔ - ૬ؔ܎਺
 ̎ͭͷωοτϫʔΫ͸ࣅ͍ͯΔ͔Ͳ͏͔ - ίΞநग़
 ωοτϫʔΫͷີʹ݁߹ͨ͠த৺෦෼

Slide 5

Slide 5 text

ωοτϫʔΫͷ͋Δ̎఺ͷ௖఺ؒ J K ͷล͸ɺ֬཰QJKͰ֬཰తʹൃੜ͢Δͱߟ͑Δ QJK͸ύϥϝʔλВΛ࣋ͭϩδεςΟοΫϞσϧͰදݱͰ͖Δ ௖఺J Kͱ௖఺K Lʹล͕ுΔ֬཰͸QJKºQKLͱදݱͰ͖Δ ౷ܭతωοτϫʔΫ෼ੳ K L J

Slide 6

Slide 6 text

ࢦ਺ϥϯμϜάϥϑϞσϧ FYQPOFOUJBMSBOEPNHSBQINPEFM  ɹϥϯμϜάϥϑ:ʹ͓͍ͯಛఆͷάϥϑߏ଄Z͕ಘΒΕΔ֬཰͸֤ล͕ுΔ֬཰ͷ
 ྦྷ৐ͰදݱͰ͖Δͱߟ͑ͨϞσϧ ౷ܭతωοτϫʔΫ෼ੳ yʹ͋Δลͷ਺ ύϥϝʔλ ن֨Խఆ਺ ωοτϫʔΫશମ ͷลͷൃੜ֬཰

Slide 7

Slide 7 text

ࢦ਺ϥϯμϜάϥϑϞσϧɹQ Ϟσϧ ɹϥϯμϜάϥϑ:ͷลͷൃੜ֬཰͸༷ʑͳཁૉʹΑΓ֬཰తʹܾ·ΔϞσϧ ౷ܭతωοτϫʔΫ෼ੳ ཁૉ ϊʔυͷಛ௃ྔɿ೥ྸɺॏΈɺ෦ॺʜ ลͷಛ௃ྔɿަࡍظؒɺ޷Έʜ ϊʔυؒͷؔ܎ͷಛ௃ɿ೥ྸࠩɺۈଓظؒࠩʜ ߏ଄తͳಛ௃ྔɿLελʔߏ଄ͷ਺ʜ ωοτϫʔΫͷߏ੒ཁ ཁૉͷ਺

Slide 8

Slide 8 text

ద༻σʔλ

Slide 9

Slide 9 text

ద༻σʔλ ೥ྸ ৬ۀ ࡱӨ৔ॴ ண༻ϒϥϯυ

Slide 10

Slide 10 text

Ϟνϕʔγϣϯ ล͸ண༻ϒϥϯυͷ ڞ௨౓ ϒϥϯυͷબ୒ͷੑ࣭Λ දݱͰ͖ͳ͍͔ (͔ͳΓແཧ໼ཧ)

Slide 11

Slide 11 text

σʔλऔಘ • ($1্Ͱ%PDLFSΛ༻͍ͯ3TUVEJP 34FMFOJVN؀ڥΛ࡞੒ • SWFTUQBDLBHFΛར༻ͯ͠εΫϨΠϐϯά • ϙΞιϯ෼෍ʹै͏ִؒͰϖʔδऔಘ ͳΜͱͳ͘  • ໿Ұ೥෼ਓͷεφοϓσʔλΛऔಘ

Slide 12

Slide 12 text

σʔλ֬ೝ ண༻ϒϥϯυϥϯΩϯά ண༻ϒϥϯυωοτϫʔΫ

Slide 13

Slide 13 text

Ϟσϧ࡞੒(ྫ) ࢦ਺ϥϯμϜϞσϧ͸TUBUOFUQBDLBHFͰ࣮૷͕Ͱ͖·͢ɻ # ωοτϫʔΫΦϒδΣΫτͷ࡞੒
 network <- as.network(x = graph_matrix, directed = FALSE, loops = FALSE) # ֤Τοδʹઆ໌ม਺(೥ྸ)Λ௥Ճ network %v% "Age" <- Age # ֤Τοδͷ೥ྸͷࠩΛܭࢉ diff.age <- abs(sweep(matrix(snap_info$Age, nrow = 638, ncol = 638), 2, snap_info$Age)) # Ϟσϧ࡞੒
 model <- ergm( network ~ edges + edgecov(diff.age) + nodecov(“Age”) )


Slide 14

Slide 14 text

Ϟσϧ࡞੒ ࢦ਺ϥϯμϜϞσϧ͸TUBUOFUQBDLBHFͰ࣮૷͕Ͱ͖·͢ɻ # ετϦʔτεφοϓͷp*Ϟσϧੜ੒ snap_net_model <- ergm(snap_net ~ 
 edges + # ลͷ਺ nodecov(“Age")+ # ೥ྸࠩ edgecov(diff.age) + # ೥ྸ nodematch(“Occupation”) + # ৬ۀ nodematch("Point") ) # ࡱӨ৔ॴ


Slide 15

Slide 15 text

݁ՌΛݟͯΈΔ > summary(snap_net_model) < ུ > Monte Carlo MLE Results: Estimate Std. Error MCMC % z value Pr(>|z|) edges -5.2066393 0.2692526 0 -19.337 <1e-04 *** edgecov.diff.age -0.0015763 0.0094767 0 -0.166 0.8679 nodecov.Age -0.0003136 0.0061215 0 -0.051 0.9591 nodematch.Occupation -0.0453192 0.0842853 0 -0.538 0.5908 nodematch.Point 0.1491330 0.0628610 0 2.372 0.0177 * 
 < ུ > AIC: 13485 BIC: 13536 (Smaller is better.)
 ࡱӨ৔ॴ͕ลͷൃੜʹ Өڹ͍ͯͦ͠͏ AIC/BICͰม਺બ୒Մೳ

Slide 16

Slide 16 text

݁ՌΛݟͯΈΔ ϞσϧΛ༻͍ͯγϛϡϨʔγϣϯ ࣮ઢɿγϛϡϨʔγϣϯʹΑΔ஋
 ശͻ͛ਤɿ࣮σʔλͷ஋ ౰ͯ͸·Γྑ͘ͳ͍ʜ

Slide 17

Slide 17 text

·ͱΊ • ࠓճͷεφοϓ৘ใͰ͸ɺண༻ϒϥϯυͷؔ܎ੑΛࢦ਺ϥϯμϜ άϥϑϞσϧͰ͏·͘දݱͰ͖·ͤΜͰͨ͠ • ౷ܭతωοτϫʔΫ෼ੳ͸݁ߏ໘ന͍ͷͰɺษڧͯ͠ΈͯͶ • ࢲ΋౷ܭతωοτϫʔΫ෼ੳͷษڧଓ͚͍͖͍ͯͨͱࢥ͍·͢ • ͳͷͰɺৄ͍͠ํ͸͝ڭतئ͍͠·͢

Slide 18

Slide 18 text

• ڞཱग़൛ʮωοτϫʔΫ෼ੳୈ̎൛ʯླ໦౒ஶ
 IUUQTXXXBNB[PODPKQFYFDPCJEPT"4*/ • \UJEZHSBQI^ͱ\HHSBQI^ʹΑΔϞμϯͳωοτϫʔΫ෼ੳ
 IUUQTXXXTMJEFTIBSFOFULBTIJUBOUJEZHSBQIHHSBQI • 3ʹΑΔωοτϫʔΫ෼ੳΛ·ͱΊ·ͨ͠ωοτϫʔΫͷࢦඪฤ
 IUUQTRJJUBDPNTBMUDPPLZJUFNTFEDFEGCDE • 3ʹΑΔωοτϫʔΫ෼ੳΛ·ͱΊ·ͨ͠౷ܭతωοτϫʔΫ෼ੳฤ
 IUUQTRJJUBDPNTBMUDPPLZJUFNTCBFGDFCGBDFBDCGD ࢀߟ