Slide 1

Slide 1 text

. …

Slide 2

Slide 2 text

What’s up in the Manz lab Andreas Manz Imperial College, London UK

Slide 3

Slide 3 text

No content

Slide 4

Slide 4 text

contents Why small? why small.ppt Chip technology microfabrication.ppt [Electrophoresis] electrophoresis.ppt Chemical reactions chemical reactions.ppt [PCR] pcr.ppt Bioreactor antibiotics.ppt Detection methods detection methods.ppt Analog computing analog computing.ppt

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

why minitiaturize volume of 1µL 1nL 1pL (1mm)3 (100µm)3 (10µm)3 600,000,000 600,000 600 25 / cm2 2500 / cm2 250 ,000/ cm2 17 min 10s 100ms 1.5 /min / cm2 250 /s / cm2 2,500,000 /s / cm2 # molecules (1nM solution) # volumes In array diffusion time # reactions (diffusion controlled) is a cube of

Slide 7

Slide 7 text

10 fold miniaturization 100 x faster reactions / bioassays 100 x faster separation 1000 x smaller volume 10 x lower reagent consumption

Slide 8

Slide 8 text

human perception < 1 cm is small > 10 m is big < 100 ms is immediate > 1 min is slow factor 100: 100 ms to 1 ms: not impressive 17 h to 10 min: makes a difference 10 min to 6 s: very impressive

Slide 9

Slide 9 text

-TAS electronics recorder pre-treatment sensor electronics recorder sampling electronics recorder carrier reagent mobile phases hydraulic control waste ideal sensor total analytical system -TAS

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

established semiconductor fabrication techniques light-source mask (from DWL) photo-resist on substrate developing, etching 3-dimensional structure bonding sealed microfluidic device microfabrication technique

Slide 12

Slide 12 text

Capillary electrophoresis on chip Jed Harrison, Carlo Effenhauser, Norbert Burggraf, Luc Bousse

Slide 13

Slide 13 text

blinkermuh

Slide 14

Slide 14 text

13-Nov-13 blinkermuh fluorescence [arb. units] time [s] 0 40 80 120 160 1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. fluorescence [arb. units] time [s] 0 40 80 120 160 1 2 3 4 5 6 cycle # 7 8 t 7 s synchr. fluorescence [arb. units] time [s] 0 40 80 120 160 1 2 3 4 5 6 cycle # 7 8 t 7 s synchr.

Slide 15

Slide 15 text

CE on chip • Scaling laws electrophoresis scaling.ppt • [Short] electrophoresis video.ppt • History electrophoresis carlo.ppt • Serial to parallel electrophoresis caliper 1.ppt • Parallel separations electrophoresis caliper 2.ppt

Slide 16

Slide 16 text

separation efficiency • Number of theoretical plates is proportional to voltage drop U N 

Slide 17

Slide 17 text

heating problem •Power generated per unit length should be a constant const L I U  

Slide 18

Slide 18 text

separation efficiency •Number of theoretical plates is proportional to length / diameter of capillary d L N 

Slide 19

Slide 19 text

separation time •Analysis time is proportional to length * diameter of capillary d L t  

Slide 20

Slide 20 text

No content

Slide 21

Slide 21 text

No content

Slide 22

Slide 22 text

No content

Slide 23

Slide 23 text

No content

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

No content

Slide 26

Slide 26 text

No content

Slide 27

Slide 27 text

SERIAL 1 2 3 4 1 2 3 4 CONVERTER ? PARALEL

Slide 28

Slide 28 text

SERIAL 2 3 4 1 1 CONVERTER PARALEL

Slide 29

Slide 29 text

No content

Slide 30

Slide 30 text

80 SEPARATION CHANNELS INJECTION CHANNEL

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

RESULTS Serial to parallel converter : 9 plugs refilled in 10 seconds, that means 1 sample plug per second 54 samples per minute 78,000 samples per day

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

`

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

No content

Slide 37

Slide 37 text

double stranded DNA separation ele caliper 2 extended.ppt

Slide 38

Slide 38 text

reaction with intercalating dye

Slide 39

Slide 39 text

No content

Slide 40

Slide 40 text

x x x x x x x x x SYBR green x x x x x x x x x x x x x double stranded DNA SYBR green x x x x x x x x x x x x x x x x x x x x x x x x SYBR green complex [fluorescing] x x x x 1) 2) 3)

Slide 41

Slide 41 text

x x x x x x x x x x x x x x x x x double stranded DNA SYBR green complex [fluorescing] concentration length of plug DNA is slowing down at moving front of SYBR green SYBR green is slowing down at moving front of DNA fluorescence length of plug

Slide 42

Slide 42 text

blinkermuh

Slide 43

Slide 43 text

13-Nov-13 Agilent 2100 Bioanalyzer

Slide 44

Slide 44 text

conclusions • High speed separations • Good quality separations • Very good fluid control • Small volumes • Commercial products •  biggest success, so far really?

Slide 45

Slide 45 text

Concept chemical reactions concept.ppt the chip chemical reactions mix.ppt Bioassay chemical reactions bio.ppt Electrophoretic reaction chemical reactions electrophoretic Synthesis chemical reactions synth.ppt

Slide 46

Slide 46 text

drug discovery • first step to find new active molecules • composed of – synthesis of new compound – isolation, characterisation – bioassay • a significant effort in pharmaceutical industry, involving new technologies

Slide 47

Slide 47 text

COMBINATORIAL CHEMISTRY QUALITY CONTROL BIOASSAYS 100 educts A 100 educts B 10,000 products AB 10,000 assays 10,000 assays ??? 10,000 products AB

Slide 48

Slide 48 text

CHEMICAL MICROPROCESSOR SYNTAS  educt A educt B is this a hit? yes/no specific reaction specific bioassay

Slide 49

Slide 49 text

chemical reaction batch Time continuous flow Length

Slide 50

Slide 50 text

A B C A B , A , B A B A B C , A B , C A B C A B C fluorescence detection bioassay synthesis step 1 synthesis step 2 separation separation continuous flow

Slide 51

Slide 51 text

A A A A A A A B B B B B A B , A , B A B A +B A +B solvent solvent solvent solvent solvent R E A C TO R S S E P A R A T O R S S T O R A G E

Slide 52

Slide 52 text

pressure induced flow local minimum for bandbroadening defines optimum flow rate How about a sequence of injected samples?

Slide 53

Slide 53 text

electroosmotic flow minimum for bandbroadening at maximum speed

Slide 54

Slide 54 text

pressure electroosmosis

Slide 55

Slide 55 text

device for parallel lamination Fiona Bessoth

Slide 56

Slide 56 text

chemical reaction • In the most simple case, a molecule A meets a molecule B and reacts to give AB • many reactions are diffusion controlled • reaction time of hours in conventional lab • reaction time of 30 min in micro well plate

Slide 57

Slide 57 text

Figure 4. Separation of several amino acids using post-column derivatization for detection. D.J.Harrison, K.Fluri,N.Chiem, T.Tang,Z.Fan University of Alberta, Edmonton,Canada Transducers’95, Proc., vol.1, pp752-755 (1995)

Slide 58

Slide 58 text

Y -shaped junction: 1:1 fluorescein-to-rhodamine B flowrate ratio (0.5 : 0.5 mL/min)

Slide 59

Slide 59 text

No content

Slide 60

Slide 60 text

Mixing – Diffusion times D d t 2 2  Before laminar mixing D n d t 2 2 2  After laminar mixing n = number of branches, d = tubing diameter, D= diffusion coefficient

Slide 61

Slide 61 text

Distributive Micromixing Device: Schematic F. G. Bessoth, A. J. de Mello and A. Manz, Anal. Commun., 1999, 36, 213-215

Slide 62

Slide 62 text

16 channels 256x faster !

Slide 63

Slide 63 text

Distributive Micromixing Chip

Slide 64

Slide 64 text

F. G. Bessoth, A. J. de Mello and A. Manz, Anal. Commun., 1999, 36, 213-215 Chip manifold volume 600 nL Observation channel 530 nL Distributive Micromixing Device

Slide 65

Slide 65 text

fused silica capillary glue glass Si glass

Slide 66

Slide 66 text

6 ms 14 ms 38 ms 94 ms 54 ms 78 ms 0 ms

Slide 67

Slide 67 text

Fluorescein and Rhodamine B; Flow rate = 50 L min-1; Time from point of confluence to beginning of long channel = ca. 9 ms laminar flow visualisation

Slide 68

Slide 68 text

No content

Slide 69

Slide 69 text

fast fluorescence quenching 0 ms 6 ms

Slide 70

Slide 70 text

Mixing * + further downstream reaction incomplete reaction incomplete reaction complete reaction complete reaction complete

Slide 71

Slide 71 text

horseradish peroxidase assay Fiona Bessoth

Slide 72

Slide 72 text

horseradish peroxidase assay 0 1 2 3 4 5 6 7 8 0 0.02 0.04 0.06 0.08 0.1 0.12 concentration HRP [g/mL] chemiluminescence signal [V] assay time 30 minutes  400 ms “incubation time” 400 ms

Slide 73

Slide 73 text

conclusions • interesting • very preliminary • surface is the problem

Slide 74

Slide 74 text

electrophoretic mixing Luc Bousse, Andreas Manz Caliper Technologies Inc, Mountain View, USA

Slide 75

Slide 75 text

synthesis of small organic molecules Michael Mitchell, Valerie Spikmans

Slide 76

Slide 76 text

Fast Reaction

Slide 77

Slide 77 text

NO2 NO2 CHO NO2 P(Ph)3 NO2 purple Br- 2-nitrobenzy ltriphenyl- phosphonium brom ide p-nitrobenza ldehyde colourless NaOMe NO2 Me OH colourless P(Ph)3 + + Wittig reaction N + O O Cl Cl Cl Cl O O Cl Cl Cl N Enamine Chloranil blue 2,3,5-trichlor-6-(2-piperidin -1-yl)-[1,4]- benzoquinone Synthesis of a substituted aminovinyl-p-quinone SYNTHESIS

Slide 78

Slide 78 text

N+ H H R1 R2 Cl- H H O MeOH N+ Cl- H2 O N R3 R4 R2 R1 C R1 N R2 N R4 R3 H2 O R1 N R2 N R4 R3 O R1/R2 = -CH2 (CH2 )3 CH2 - Piperidine hydrochloride + + Piperidinium cation + R3/R4 = -CH2 (CH2 )4 CH2 - Cyclohexyl isocyanide Nitrilium intermediate -Dialkylacetamide Formaldehyde N-Cyclohexyl-2-piperidin-1-yl-acetamide (1) (2) (3) (4) (5) (6) Multicomponent Chemistries: The Ugi Reaction 0oC

Slide 79

Slide 79 text

No content

Slide 80

Slide 80 text

Inlet capillaries Syringes Rheodyne injection valve Injection loop outlet capillary Micromixer chip / PTFE interface

Slide 81

Slide 81 text

Simultaneous Observation of Reactants, Intermediates, Products and By-products 20 Lmin-1 50 nL injection loop Room temperature

Slide 82

Slide 82 text

conclusions • Some syntheses do work! • What is the limitation? • Very fast mixing • Higher temperatures than usual • Better selectivity • Complicated device

Slide 83

Slide 83 text

Continuous-flow polymerase chain reactor Martin Kopp, Marco Luechinger

Slide 84

Slide 84 text

polymerase chain reaction • = method to amplify the amount of a specific DNA sequence in a sample • each cycle doubles the amount of DNA • most commonly used procedure in biology • commercial instruments would do 20 cycles in 50 minutes

Slide 85

Slide 85 text

Figure 1. Cross section of micro-PCR test device. Figure 5. Gel electrophoretic photograph indicating that similar results were obtained with a 50ul microfabricated test device (mid-right three bands) as in much lager commercial instrument (mid-left two bands). The target sequence amplified was HIV.

Slide 86

Slide 86 text

T.M.Woudenberg, E.S.Winn-Deen, M.Albin [Applied Biosystems, Foster City, CA] High-density PCR and beyond, u-TAS 96, p 55-59 (1996) First data from polycarbonate “chip”

Slide 87

Slide 87 text

No content

Slide 88

Slide 88 text

95oC Melting 77oC Extension 60oC Annealing PCR - Continuous Flow Chip 20 identical cycles Time ratio of 4:4:9 (melting:annealing:extension) Theoretical amplification factor of 220

Slide 89

Slide 89 text

PCR - Continuous Flow Chip

Slide 90

Slide 90 text

Cold start PCR Tricine (pH 8.4) 10 mM Tween 20 0.01% (w/v) KCl 50 mM NTP 20 M each MgCl2 1.5 mM PVP 1.4 M Primer 1 M Taq polymerase 0.25 U/L Template ca. 108 copies

Slide 91

Slide 91 text

PCR - Continuous Flow Chip

Slide 92

Slide 92 text

No content

Slide 93

Slide 93 text

Efficiency of amplification On the chip: Template 108 copies Product 5.1011 copies Factor 5,000 = 1.5320 commercial thermocycler: Factor 7,030 = 1.5620

Slide 94

Slide 94 text

No content

Slide 95

Slide 95 text

Advantages of Continuous Flow PCR Chip variable volumes – 1nL to1mL low carryover high speed 12 to 60s per cycles low band-broadening High speed chemical amplifier

Slide 96

Slide 96 text

Bioreactor on a chip Paul Monaghan

Slide 97

Slide 97 text

Bioreactor on a chip • Permits the growth of a bacterium on-chip • Goal: antibiotics screening • Uses PDMS device for gas permeability

Slide 98

Slide 98 text

Monitoring the growth of bacterial cultures • The sampling of a growing culture at various time intervals (by viable counts,dry weight of the biomass or optical density measurements) • Real-time monitoring • miniaturized systems • reduction of biological waste Conventional bulk growth techniques Microbiology microfluidic

Slide 99

Slide 99 text

Fused silica capillaries Graphite ferrules Temp. sensor Heating Block PDMS device Fluidic connections a b PDMS Device and Set-up

Slide 100

Slide 100 text

Photomicrographs of Cell Growth on-Chip 0hr 1hr 2hr 3hr 4hr 5hr

Slide 101

Slide 101 text

Fluorescence measurements - Plots of PMT signal versus sampling time 0 1 2 3 4 5 0 10 20 30 40 50 60 70 80 90 100 sampling t (s) PMT sig. (V) 0hr 1hr 2hr a. Over the initial two hours, the data suggests that there is not a great deal of increase in the biomass. 0 1 2 3 4 5 0 10 20 30 40 50 60 70 80 90 100 sampling t (s) PMT sig. (V) 3hr 4hr b. After 3hr that there is any appreciable increase in the signal as indicated by figure b. At 4hrs, the signal has significantly increased.

Slide 102

Slide 102 text

0.10 1.00 10.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 Time (hr) Average PMT signal (V) 0.5mg/L 1mg/L 2mg/L Control antibiotics testing, chloramphenicol

Slide 103

Slide 103 text

conclusions • Simple design • Gas permeability • Optical interrogation • A little bit faster than conventional

Slide 104

Slide 104 text

plasma emission C:\WINDOWS\Desktop\talk 03-01\plasma.ppt electro-chemiluminescence C:\WINDOWS\Desktop\talk 03-01\ecl.ppt potentiometry Fourier transform methods C:\WINDOWS\Desktop\talk 03-01\scoft.ppt

Slide 105

Slide 105 text

Plasma emission detector Jan Eijkel, Herbert Stoeri, Omar Naji, Fiona Bessoth, Gareth Jenkins, Darwin Reyes

Slide 106

Slide 106 text

State-of-the-art • inductively coupled plasma • 1 kW power consumption • gas temperature 6,000K • safety radius 1 m • very low detection limits for metals • liquid nebulizing interfaces

Slide 107

Slide 107 text

Scaling laws for dc glow discharge • pressure 1/d • el.current 1 • voltage 1 • # of charged particles 1/d2 • electron temperature 1 • plasma core gas temperature 1/d

Slide 108

Slide 108 text

No content

Slide 109

Slide 109 text

No content

Slide 110

Slide 110 text

detector volume 50 nL

Slide 111

Slide 111 text

Spectroscopy, carbon 300 400 500 600 700 800 -5000 0 5000 Emission (AU) Wavelength (nm) helium helium + methanol ~ ~ ~

Slide 112

Slide 112 text

Calibration curve for methane • Detection limit 2·10-14 g/s C 10 100 1000 104 1 10 100 1000 emission intensity minus background / A.U. CH 4 concentration / ppm 3*Noise

Slide 113

Slide 113 text

Calibration for hexane 10 100 1000 104 10 100 1000 104 Plasma chip peak height (AU) FID peak height (pA)

Slide 114

Slide 114 text

0 500 1000 1500 2000 2500 3000 3500 4000 4500 200 300 400 500 600 700 800 900 Wavelength (nm) Emission Intensity (AU) CH2 Cl2 CCl Cl CH He C/C2 C2 He H He Spectroscopy, Cl

Slide 115

Slide 115 text

0 500 1000 1500 2000 2500 3000 3500 4000 4500 200 300 400 500 600 700 800 900 Wavelength (nm) Emission Intensity (AU) Background (He) Bromopropane 470.2 478.2 481.5 Bromopropane Br Spectroscopy, Br

Slide 116

Slide 116 text

conclusions • simple layout and operation • 10-50 mW power consumption • gas temperature 400K • can be touched during operation • acceptable detection limits for volatiles • problem: liquid samples plasma liq.ppt analog computing.ppt

Slide 117

Slide 117 text

liqid samples ? 50 nL of gas (1 atm) corresponds to 50 pL of liquid spraying not succesful  sputtering off sample surface

Slide 118

Slide 118 text

Schematic of Electrolyte as Cathode Discharge (ELCAD) Optical Emission Detector Chip

Slide 119

Slide 119 text

Cathode Connection Gas / sample outlet Spectrometer connection / plasma chamber H.V. Anode Gas inlet (Argon or Helium) Sample Inlet

Slide 120

Slide 120 text

Experimental Setup of ELCAD Optical Emission Detector Chip

Slide 121

Slide 121 text

Top trace : 0.1M CuSO4 in 1M HCl Bottom trace : 1M HCl

Slide 122

Slide 122 text

Top trace : 0.1M CuSO4 in 1M HCl Bottom trace : 1M HCl Possible CuI bands at 485nm & 488nm Cu lines at 511nm, 515nm & 522nm

Slide 123

Slide 123 text

electro-chemiluminescence Arun Arora

Slide 124

Slide 124 text

No content

Slide 125

Slide 125 text

No content

Slide 126

Slide 126 text

No content

Slide 127

Slide 127 text

6 x 10-12 4 x 10-12 2 x 10-12 0 40 20 0 concentration / mol dm-3 emission intensity / a.u. figure 4

Slide 128

Slide 128 text

Sensitivity of electrochemiluminescence detector for Ru(bpy)2 Detector cell volume 100 nL concentration number of molecules light intensity 5.10-13 M 30,000 2.1 + 0.5 1.10-12 M 60,000 5.2 + 0.4 2.10-12 M 120,000 11.1 + 0.7 4.10-12 M 240,000 28.0 + 0.6 5.10-12 M 300,000 34.1 + 0.4

Slide 129

Slide 129 text

floating electrodes pH changes indicate ox and red

Slide 130

Slide 130 text

electrode electrode Pt Pt Pt ox red ox red ox red ox red ox red ox red red ox 1-2 V applied voltage

Slide 131

Slide 131 text

No content

Slide 132

Slide 132 text

ECL and CE chip glass device with Pt electrode

Slide 133

Slide 133 text

ECL and CE chip

Slide 134

Slide 134 text

No content

Slide 135

Slide 135 text

No content

Slide 136

Slide 136 text

ECL and CE chip Ru (bpy)3 light emission increases with voltage

Slide 137

Slide 137 text

ECL and CE chip direct measurement of Ru2+

Slide 138

Slide 138 text

TBR -3 -2 -1 0 1 -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 Log C (M) Log Signal (arbitrary units) Calibration Curve

Slide 139

Slide 139 text

indirect detection possible

Slide 140

Slide 140 text

conclusions • interesting and simple • problem: electrolysis of water • not satisfactory detection limit

Slide 141

Slide 141 text

potentiometric detector Ratna Tantra

Slide 142

Slide 142 text

potentiometry

Slide 143

Slide 143 text

potentiometry liquid chromatography S.Muller, D.Scheidegger, C.Haber, W.Simon, J. High Res. Chromatogr. 14, 174 (1991)

Slide 144

Slide 144 text

potentiometry selectivity Ba2+ vs Mg2+ 2.10-5 Ba2+ vs Ca2+ 3.10-3 Ba2+ vs Cu2+ 3.10-5 Ba2+ vs Na+ 4.10-3 Ba2+ vs K+ 8.10-3 M.W.Laubli, W.Simon, F.Vogtle, Anal. Chem. 57, 2756 (1985) this selectivity is not enough for Ba2+ in presence of Na+

Slide 145

Slide 145 text

CE combined with potentiometry resolution Ba2+ vs Mg2+ n/a Ba2+ vs Ca2+ 16 Ba2+ vs Cu2+ n/a Ba2+ vs Na+ 20 Ba2+ vs K+ 36 T.Kappes, P.Schnierle, P.C.Hauser, Anal. Chim. Acta 393, 77 (1999)

Slide 146

Slide 146 text

CE combined with potentiometry FIA, potentiometry CE, potentiometry Ba2+ Ba2+ Na2+, Ba2+ Na2+

Slide 147

Slide 147 text

CE potentiometry chip glass microstructure with PDMS wells

Slide 148

Slide 148 text

potentiometry chip glass microstructure with PDMS wells

Slide 149

Slide 149 text

potentiometry chip

Slide 150

Slide 150 text

potentiometry chip

Slide 151

Slide 151 text

potentiometry CE chip conc [arb. units] 0 1 2 3 4 5 6 0 10 20 30 40 50 60 time [s] EMF [V] 0 0.05 0.1 0.15 0.2 0.25 0 10 20 30 40 50 60 time [s]

Slide 152

Slide 152 text

potentiometry CE chip main problem •membrane liquid is moved out when voltage is applied • reproducibility • lifetime

Slide 153

Slide 153 text

Shah convolution, Fourier transform velocimetry John Crabtree, Toby Jeffery, Yien Kwok, Jan Eijkel

Slide 154

Slide 154 text

Shah Convolution - FT- Detection Typical detections - single point injection detection e.g. Fluorescence Electrochemical Conductance …. separation

Slide 155

Slide 155 text

injection Imaging detection Injection separation function detection SIGNAL RECORDED Shah Convolution - FT- Detection injection Delta function convolution Shah function SIGNAL RECORDED DECONVOLUTION separation Fourier transform f (frequency) Electrophoretic mobility 1/f Electrophopherogram

Slide 156

Slide 156 text

Shah Convolution - FT- Detection µ-TAS device – ideal geometries - LIF 55 Slits – 700µm spacing, 300µm transparent Channel 15µm deep, 50µm wide slit array Cr layer sample carrier electrolyte waste waste injection detection area

Slide 157

Slide 157 text

Shah Convolution - FT- Detection

Slide 158

Slide 158 text

detection during re-mixing detector signal A (t) mobility spectrum X

Slide 159

Slide 159 text

multiple injection detector signal B (t) mobility spectrum X scoft multi inj.ppt scoft particles.ppt

Slide 160

Slide 160 text

No content

Slide 161

Slide 161 text

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 16 20 24 28 32 36 40 time (sec) PMT Signal (V) 1st 2nd 1st 2nd 3rd 2-plugs 3-plugs

Slide 162

Slide 162 text

0 150 300 450 600 750 900 0.5 1 1.5 2 2.5 3 frequency (Hz) FT Magnitude (arb. units) 1.675 Hz fundamental 1.8 Hz fundamental 2-plugs 3-plugs -0.5 0.5 1.5 2.5 3.5 4.5 5.5 0 5 10 15 20 25 30 35 time (sec) PMT Signal (V) 2-plugs 3-plugs Fourier Transform

Slide 163

Slide 163 text

Table 3: S/N vs Number of Sample Plugs Number of Sample Plugs S/N a Standard deviation 1 46 2.5 2 69 5 3 102 1 (a) average of two runs for each number of sample plugs

Slide 164

Slide 164 text

No content

Slide 165

Slide 165 text

SR SW BW Electrophoretic Channel Cr film with micromachined slits 40 m wide slit 30 m gap

Slide 166

Slide 166 text

0 0.02 0.04 0.06 0.08 0.1 50 55 60 65 70 time (s) PMT Signal (V)

Slide 167

Slide 167 text

0 5 10 15 20 25 30 5 7 9 11 13 15 17 Frequency (Hz) FT Magnitude (arb. units)

Slide 168

Slide 168 text

0 30 6.4 7 7.6 Frequency (Hz) FT Magnitude (arb. units) are these fine lines single particles?

Slide 169

Slide 169 text

wavelet transform 7Hz area time [s] 20 0 frequency [Hz] single particle 10

Slide 170

Slide 170 text

7 Hz 14 Hz

Slide 171

Slide 171 text

mobility spectrum X detector signal C (t) frontal analysis scoft frontal.ppt

Slide 172

Slide 172 text

No content

Slide 173

Slide 173 text

0 2 4 6 0 10 20 time (sec) PMT Signal (V) 50 100 150 200 0.5 1 1.5 2 frequency (Hz) FT(Magnitude) (arb. units) FT ~1 Hz fundamental (A) (B) -10 190 390 590 0 1 2 frequency (Hz) FT(Real-B)^2 (arb. units) 1 Hz fundamental (C) FT -0.004 0 0.004 0.008 0.012 0 10 20 time (sec) Differentiated PMT Signal (arb. units) (D) Differentiation 0 1 2 3 0 1 2 frequency (Hz) FT(Magnitude) (arb. units) FT (E) 1 Hz fundamental

Slide 174

Slide 174 text

conclusions • Not clear what advantages are • Interesting • Hope to increase resolution [?]

Slide 175

Slide 175 text

Analog computing Darwin Reyes

Slide 176

Slide 176 text

2 + 2 = ? What is the optimum linear velocity for minimum band broadening? What is the optimal street modification for London’s daily traffic jam?

Slide 177

Slide 177 text

Very simple approach to a mathematical problem: • Provide the problem as a micro channel system • Pose the question by addressing electrodes • Get the answer visualized by plasma emission MAZES

Slide 178

Slide 178 text

given: the most simple maze question: What is shortest connection between A and B? A B He in-, outlet electrodes

Slide 179

Slide 179 text

No content

Slide 180

Slide 180 text

No content

Slide 181

Slide 181 text

Increased mathematical complexity same time to find solution

Slide 182

Slide 182 text

No content

Slide 183

Slide 183 text

No content

Slide 184

Slide 184 text

No content

Slide 185

Slide 185 text

Victoria station Imperial College

Slide 186

Slide 186 text

Interesting paper by Whitesides group on “maximum clique” problem solving by particle counting in microfluidic device PNAS 2001 …

Slide 187

Slide 187 text

conclusion • interesting • fun ! • search the problem for a solution • not clear, how useful

Slide 188

Slide 188 text

Acknowledgment Coworkers and Ph.D. students Jan Eijkel Chao-Xuan Zhang Michael Mitchell Fiona Bessoth Omar Naji Darwin Reyes postdocs Arun Arora Yien Kwok Gareth Jenkins Silvia Valussi Nicole Pamme Oliver Hofmann Paul Monaghan Melanie Fennah Valerie Spikmans Nils Goedeke Dimitrios Iossifidis Pierre-Alain Auroux

Slide 189

Slide 189 text

FUNDING INSTRUMENTATION SmithKline Beecham (UK) Zeneca (UK) BBSRC, UK EPSRC, UK European Commission, B Schlumberger, UK Casect, UK Agilent, D Forensic Lab, UK Asahi Kasei, Japan Lab of the Government Chemist, UK CSEM, Switzerland Amersham Pharmacia, UK Kodak, UK Glaxo Wellcome, UK Glaxo-Wellcome Heidelberg Instruments Hybaid MICROFABRICATION Alberta Microelectronics Centre, Canada Caliper Technologies, California MESA, University of Twente, The Netherlands CSEM, Switzerland !