Slide 1

Slide 1 text

MONTE CARLO RAY TRACING! ΞϧΰϦζϜ௒ུ֓ ౉෦৺! Twitter: @Shocker_0x15! ϨΠτϨ߹॓ https://sites.google.com/site/raytracingcamp2/

Slide 2

Slide 2 text

ϞϯςΧϧϩੵ෼

Slide 3

Slide 3 text

I = f (x)dx a b ∫ I ≈ 1 N f (xi ) p(xi ) i=1 N ∑ ਪఆ஋͸෼ࢄΛ࣋ͭ! ظ଴஋͸ਅ஋ʹҰக͢Δ ϞϯςΧϧϩਪఆؔ਺

Slide 4

Slide 4 text

f (x) x a b p(x) x a b I ≈ 1 N f (xi ) p(xi ) i=1 N ∑ ೚ҙͷ1%'͕࢖༻Մೳ

Slide 5

Slide 5 text

I ≈ 1 N f (xi ) p(xi ) i=1 N ∑ ॏ఺తαϯϓϦϯά f (x) x a b p(x) f (x) x a b p(x) ଎͍ऩଋ(௿෼ࢄ) ஗͍ऩଋ(ߴ෼ࢄ) ཧ૝తͳPDFΛٻΊΔ͜ͱ͸ࠔ೉

Slide 6

Slide 6 text

άϩʔόϧΠϧϛωʔγϣϯ Χϝϥʗ؟ ޫݯ Χϝϥʹ౸ୡ͢Δ͋ΒΏΔޫܦ࿏ͷد༩Λੵ෼͢Δ I = f (x)dµ(x) Ω ∫

Slide 7

Slide 7 text

Χϝϥʗ؟ ޫݯ ܦ࿏ I ≈ 1 N f (xi ) p(xi ) i=1 N ∑ f (xi ): ܦ࿏ʹԊͬͨد༩ xi : ϥϯμϜͳܦ࿏ ϞϯςΧϧϩੵ෼Λ࢖ͬͯղ͘ p(x i ): ϥϯμϜͳܦ࿏Λੜ੒͢ΔPDF

Slide 8

Slide 8 text

PATH TRACING

Slide 9

Slide 9 text

ೖࣹํ޲Λ֬཰తʹαϯϓϧɺޫݯʹ౰ͨΕ͹د༩͕ͱΕΔ ࢹ఺͔Βޫ༌ૹܦ࿏ΛτϨʔε ͳ͔ͳ͔౰ͨΒͳ͍ʂ

Slide 10

Slide 10 text

NEXT EVENT ESTIMATION ޫݯ্ͷ఺Λ໌ࣔతʹαϯϓϧɺࢹઢܦ࿏ͱ઀ଓ͢Δ

Slide 11

Slide 11 text

MULTIPLE IMPORTANCE SAMPLING
 ྫɿ௚઀র໌ͷਪఆ

Slide 12

Slide 12 text

Light ޫ୔BSDF I ≈ 1 N f (xBSDF, i ) pBSDF (xBSDF, i ) i=1 N ∑ #4%'ͷد༩ʹԊͬͨॏ఺తαϯϓϦϯά #4%'د༩ʹԊͬͯೖࣹํ޲αϯϓϧɿߴ͍֬཰Ͱߴ͍د༩ à௿͍෼ࢄ ޫݯ͕ྑ͍৔ॴʹ͋Ε͹

Slide 13

Slide 13 text

Light ֦ࢄBSDF I ≈ 1 N f (xBSDF, i ) pBSDF (xBSDF, i ) i=1 N ∑ #4%'ͷد༩ʹԊͬͨॏ఺తαϯϓϦϯά #4%'د༩ʹԊͬͯೖࣹํ޲αϯϓϧɿ௿͍֬཰Ͱߴ͍د༩ àߴ͍෼ࢄ ͨ·ʹ͔͠౰ͨΒͳ͍ͨΊ

Slide 14

Slide 14 text

Light ֦ࢄBSDF I ≈ 1 N f (x light, i ) p light (x light, i ) i=1 N ∑ ޫݯ্ͷҐஔͷॏ఺తαϯϓϦϯά ޫݯ্ͷҐஔΛαϯϓϧͯ͠઀ଓɿߴ͍֬཰Ͱߴ͍د༩ à௿͍෼ࢄ #4%'ͷ஋͕ൺֱతҰ༷Ͱ͋Ε͹

Slide 15

Slide 15 text

Light ޫ୔BSDF I ≈ 1 N f (x light, i ) p light (x light, i ) i=1 N ∑ ޫݯ্ͷҐஔͷॏ఺తαϯϓϦϯά ޫݯ্ͷҐஔΛαϯϓϧͯ͠઀ଓɿ௿͍֬཰Ͱߴ͍د༩ àߴ͍෼ࢄ #4%'ͷ஋͕ඇҰ༷ͳͨΊ

Slide 16

Slide 16 text

ޫݯ໘ͷαϯϓϦϯά #4%'ͷαϯϓϦϯά

Slide 17

Slide 17 text

Multiple Importance Sampling I ≈ 1 N f (xBSDF, i ) pBSDF (xBSDF, i ) i=1 N ∑ I ≈ 1 N f (xlight, i ) plight (xlight, i ) i=1 N ∑ I ≈ 1 N wBSDF (xBSDF, i ) f (xBSDF, i ) pBSDF (xBSDF, i ) + wlight (xlight, i ) f (xlight, i ) plight (xlight, i ) " # $ % & ' i=1 N ∑

Slide 18

Slide 18 text

w BSDF (x) = p BSDF (x) p BSDF (x)+ p light (x) wlight (x) = plight (x) pBSDF (x)+ plight (x) I ≈ 1 N wBSDF (xBSDF, i ) f (xBSDF, i ) pBSDF (xBSDF, i ) + wlight (xlight, i ) f (xlight, i ) plight (xlight, i ) " # $ % & ' i=1 N ∑ .*4΢ΣΠτ όϥϯεώϡʔϦεςΟοΫ

Slide 19

Slide 19 text

.*4ʹΑΔ΢ΣΠτ഑෼ .VMUJQMF*NQPSUBODF4BNQMJOH

Slide 20

Slide 20 text

BIDIRECTIONAL PATH TRACING! VEACH-STYLE

Slide 21

Slide 21 text

.*4ΛҰൠԽ 15ʹ͓͚Δ ௚઀র໌ͷ৔߹ʜ ೚ҙͷܦ࿏ʹҰൠԽʂ

Slide 22

Slide 22 text

ࢹઢαϒύεͱޫݯαϒύεΛੜ੒ɺ֤௖఺Λ઀ଓ

Slide 23

Slide 23 text

(2,2) (3,1) (1,3) ྫ௕͞ MIS ˎ ΋͋ΓಘΔ

Slide 24

Slide 24 text

#JEJSFDUJPOBM1BUI5SBDJOH 1BUI5SBDJOH ؒ઀র໌͕ࢧ഑తͳγʔϯʹ͓͍ͯ΋ϩόετ

Slide 25

Slide 25 text

METROPOLIS LIGHT TRANSPORT

Slide 26

Slide 26 text

௨ৗͷ.$35ͷ໰୊఺ ྫɿ1BUI5SBDJOH ͘͝Ұ෦ͷྖҬͷޫ༌ૹܦ࿏͕ॏཁͱͳΔγʔϯʹऑ͍! ྫɿগ͚ͩ͠։͍ͨυΞ͔Β࿙ΕΔޫɺίʔεςΟΫε͕ओཁͳޫݯ ຖճϥϯμϜʹܦ࿏ΛτϨʔεɿ໓ଟʹد༩͕ͱΕͳ͍ʂʂ!

Slide 27

Slide 27 text

௨ৗͷ.$35ͷ໰୊఺ ྫɿ1BUI5SBDJOH ͘͝Ұ෦ͷྖҬͷޫ༌ૹܦ࿏͕ॏཁͱͳΔγʔϯʹऑ͍! ྫɿগ͚ͩ͠։͍ͨυΞ͔Β࿙ΕΔޫɺίʔεςΟΫε͕ओཁͳޫݯ ຖճϥϯμϜʹܦ࿏ΛτϨʔεɿ໓ଟʹد༩͕ͱΕͳ͍ʂʂ!

Slide 28

Slide 28 text

௨ৗͷ.$35ͷ໰୊఺ ྫɿ1BUI5SBDJOH ͘͝Ұ෦ͷྖҬͷޫ༌ૹܦ࿏͕ॏཁͱͳΔγʔϯʹऑ͍! ྫɿগ͚ͩ͠։͍ͨυΞ͔Β࿙ΕΔޫɺίʔεςΟΫε͕ओཁͳޫݯ ຖճϥϯμϜʹܦ࿏ΛτϨʔεɿ໓ଟʹد༩͕ͱΕͳ͍ʂʂ!

Slide 29

Slide 29 text

ޫ༌ૹ΁ͷϝτϩϙϦεαϯϓϦϯάͷద༻ طଘͷ༗ޮͳύε΁มҟΛՃ͑ͯ৽ͨͳύεΛੜ੒! د༩͕খ͘͞ͳΔมҟ͸֬཰తʹغ٫͞ΕΔ

Slide 30

Slide 30 text

ޫ༌ૹ΁ͷϝτϩϙϦεαϯϓϦϯάͷద༻ طଘͷ༗ޮͳύε΁มҟΛՃ͑ͯ৽ͨͳύεΛੜ੒! د༩͕খ͘͞ͳΔมҟ͸֬཰తʹغ٫͞ΕΔ

Slide 31

Slide 31 text

ޫ༌ૹ΁ͷϝτϩϙϦεαϯϓϦϯάͷద༻ طଘͷ༗ޮͳύε΁มҟΛՃ͑ͯ৽ͨͳύεΛੜ੒! د༩͕খ͘͞ͳΔมҟ͸֬཰తʹغ٫͞ΕΔ

Slide 32

Slide 32 text

ޫ༌ૹ΁ͷϝτϩϙϦεαϯϓϦϯάͷద༻ طଘͷ༗ޮͳύε΁มҟΛՃ͑ͯ৽ͨͳύεΛੜ੒! د༩͕খ͘͞ͳΔมҟ͸֬཰తʹغ٫͞ΕΔ

Slide 33

Slide 33 text

ޫ༌ૹ΁ͷϝτϩϙϦεαϯϓϦϯάͷద༻ طଘͷ༗ޮͳύε΁มҟΛՃ͑ͯ৽ͨͳύεΛੜ੒! د༩͕খ͘͞ͳΔมҟ͸֬཰తʹغ٫͞ΕΔ د༩àغ٫

Slide 34

Slide 34 text

ޫ༌ૹ΁ͷϝτϩϙϦεαϯϓϦϯάͷద༻ طଘͷ༗ޮͳύε΁มҟΛՃ͑ͯ৽ͨͳύεΛੜ੒! د༩͕খ͘͞ͳΔมҟ͸֬཰తʹغ٫͞ΕΔ ݩͷܦ࿏ʹ໭͢

Slide 35

Slide 35 text

Bidirectional Path Tracing

Slide 36

Slide 36 text

Metropolis Light Transport

Slide 37

Slide 37 text

PRIMARY SAMPLE SPACE MLT

Slide 38

Slide 38 text

n࣍ݩͷ0 ~ 1ཚ਺! 㱨 Primary Sample Space n࣍ݩ௒ཱํମ 0 1 0 1 ܦ࿏ͷૉʹͳΔཚ਺ϨϕϧͰมҟΛՃ͑Δ 144ͷ࠲ඪͱܦ࿏͸ ҰରҰରԠ 15΍#15ʹΑΔϚοϐϯά ΦϦδφϧ.-5ΑΓ࣮૷͕؆୯͔ͭϩόετ ͱظ଴͞ΕΔ

Slide 39

Slide 39 text

n࣍ݩͷ0 ~ 1ཚ਺! 㱨 Primary Sample Space n࣍ݩ௒ཱํମ 0 1 0 1 ܦ࿏ͷૉʹͳΔཚ਺ϨϕϧͰมҟΛՃ͑Δ 144ͷ࠲ඪͱܦ࿏͸ ҰରҰରԠ 15΍#15ʹΑΔϚοϐϯά ΦϦδφϧ.-5ΑΓ࣮૷͕؆୯͔ͭϩόετ ͱظ଴͞ΕΔ

Slide 40

Slide 40 text

n࣍ݩͷ0 ~ 1ཚ਺! 㱨 Primary Sample Space n࣍ݩ௒ཱํମ 0 1 0 1 ܦ࿏ͷૉʹͳΔཚ਺ϨϕϧͰมҟΛՃ͑Δ 144ͷ࠲ඪͱܦ࿏͸ ҰରҰରԠ 15΍#15ʹΑΔϚοϐϯά ΦϦδφϧ.-5ΑΓ࣮૷͕؆୯͔ͭϩόετ ͱظ଴͞ΕΔ

Slide 41

Slide 41 text

PHOTON MAPPING

Slide 42

Slide 42 text

No content

Slide 43

Slide 43 text

ϑΥτϯτϨʔγϯά

Slide 44

Slide 44 text

ϑΥτϯτϨʔγϯά

Slide 45

Slide 45 text

ϑΥτϯτϨʔγϯά

Slide 46

Slide 46 text

ϑΥτϯτϨʔγϯά ີ౓ਪఆ

Slide 47

Slide 47 text

ϑΥτϯτϨʔγϯά ີ౓ਪఆ

Slide 48

Slide 48 text

ϑΥτϯτϨʔγϯά ີ౓ਪఆ ϑΥτϯϚοϐϯά͸ܦ࿏ΛΏΔ͘઀ଓ͢Δ͜ͱʹΑͬͯ! ܦ࿏Λ࠶ར༻ɺଟ༷ͳܦ࿏Λ·ͱΊͯܭࢉ

Slide 49

Slide 49 text

PROGRESSIVE PHOTON MAPPING

Slide 50

Slide 50 text

ϑΥτϯϚοϐϯάͷ໰୊఺ ਖ਼֬ͳً౓ਪఆʹ͸
 ແݶখͷ୳ࡧ൒ܘʹແݶݸͷϑΥτϯͱ͍͏৚͕݅ඞཁ ϝϞϦ΍ܭࢉίετ໘ͰෆՄೳʂ

Slide 51

Slide 51 text

PROGRESSIVE PHOTON MAPPING : PPM ϑΥτϯτϨʔγϯάΛ܁Γฦͯ͠౷ܭྔΛߋ৽ ͋Β͔͡Ίً౓ܭࢉ఺Λੜ੒͓ͯ͘͠ ౷ܭߋ৽ˍ൒ܘॖݮ

Slide 52

Slide 52 text

ແݶখͷ൒ܘʹແݶݸͷϑΥτϯͱ͍͏৚݅ʹ
 ϓϩάϨογϒʹۙͮ͘ ϑΥτϯͷ୳ࡧ൒ܘΛ൓෮͝ͱʹॖݮ ൒ܘॖݮʗ౷ܭྔͷߋ৽

Slide 53

Slide 53 text

STOCHASTIC PPM

Slide 54

Slide 54 text

11.ͷ໰୊఺ ޫ୔൓ࣹ ΞϯνΤΠϦΞε Ϟʔγϣϯϒϥʔ ඃࣸքਂ౓ ͜ΕΒͷޮՌ͸ฏۉ์ًࣹ౓ਪఆΛඞཁͱ͢Δ ਖ਼֬ͳਪఆʹ͸ແݶͷً౓ਪఆ఺͕ඞཁ ྫɿΞϯνΤΠϦΞε ɹɹϐΫηϧ಺ͷαϯϓϧ఺ ྫɿඃࣸքਂ౓ ɹɹϨϯζ্ͷαϯϓϧ఺

Slide 55

Slide 55 text

SPPM ྖҬ಺Ͱ୳ࡧ൒ܘͳͲͷ౷ܭྔΛڞ༗ ޫ୔൓ࣹ ൓ࣹํ޲ ΞϯνΤΠϦΞε ϐΫηϧ Ϟʔγϣϯϒϥʔ γϟολʔ࣌ؒத ඃࣸքਂ౓ Ϩϯζ্ શͯΛ·ͱΊΔ͜ͱͰ ฏۉً౓ͷਪఆ஋ΛϓϩάϨογϒʹਅ஋ʹ͚ۙͮΒΕΔ

Slide 56

Slide 56 text

ً౓ܭଌ఺΋ຖճ࡞Γ௚͢ ϐΫηϧதͷҐஔ΍ɺϨϯζ্ͷҐஔɺ࣌ؒɺޫ୔൓ࣹํ޲ ͳͲΛຖճมߋ͢Δ ڞ༗౷ܭߋ৽ˍ൒ܘॖݮ

Slide 57

Slide 57 text

Bidirectional Path Tracing

Slide 58

Slide 58 text

Progressive Photon Mapping

Slide 59

Slide 59 text

Stochastic PPM

Slide 60

Slide 60 text

PPM: PROBABILISTIC APPROACH

Slide 61

Slide 61 text

411.ͷҰൠԽΛ͞Βʹਪ͠ਐΊͨख๏ ൒ܘΛঃʑʹখ͍ͯͬͨ͘͞͠ ΦϦδφϧͷϑΥτϯϚοϐϯάͷ݁ՌΛॏͶ߹ΘͤΔ͚ͩʂ ൒ܘॖݮ

Slide 62

Slide 62 text

ADAPTIVE ! MARKOV CHAIN MONTE CARLO! PPM

Slide 63

Slide 63 text

11. 411. ͷ໰୊఺ ՄࢹྖҬ ෆՄࢹͳϑΥτϯܦ࿏
 ʹແବͳܭࢉ ༗ޮͳϑΥτϯܦ࿏

Slide 64

Slide 64 text

AMCMCPPM = PPM + PSSMLT + α ॳظͷՄࢹܦ࿏

Slide 65

Slide 65 text

AMCMCPPM = PPM + PSSMLT + α ॳظͷՄࢹܦ࿏ ෆՄࢹà غ٫

Slide 66

Slide 66 text

AMCMCPPM = PPM + PSSMLT + α ॳظͷՄࢹܦ࿏

Slide 67

Slide 67 text

AMCMCPPM = PPM + PSSMLT + α ॳظͷՄࢹܦ࿏ Մࢹà ࠾୒

Slide 68

Slide 68 text

AMCMCPPM = PPM + PSSMLT + α

Slide 69

Slide 69 text

AMCMCPPM = PPM + PSSMLT + α Primary Sample Space
 தͷมҟΛ༻͍ͯ
 ܦ࿏Λੜ੒

Slide 70

Slide 70 text

AMCMCPPM = PPM + PSSMLT + α Primary Sample Space
 தͷมҟΛ༻͍ͯ
 ܦ࿏Λੜ੒ มҟύϥϝλʔͷ ࣗಈௐ੔΋ߦ͏౳ આ໌ল͖·͢ + α

Slide 71

Slide 71 text

".$.$11. 411.

Slide 72

Slide 72 text

SPPM AMCMCPPM ஫໨ྖҬ͕૬ରతʹখ͘͞ͳΔ΄Ͳ11.͸ഁ୼͢Δ .$.$ͱύϥϝλʔͷࣗಈௐ੔ʹΑΓ ".$.$11.͸શͯͷഒ཰Ͱ༏Εͨ݁Ռ

Slide 73

Slide 73 text

UNIFIED PATH SAMPLING! (VERTEX CONNECTION AND MERGING)

Slide 74

Slide 74 text

BPT ޫ୔໘ͷଟ͍γʔϯಘҙ 4%4ύεۤख PPM ޫ୔໘ͷଟ͍γʔϯۤख 4%4ύεಘҙ .*4 ͔͠͠໰୊͕͋Δ ྫɿ௕͞ͷܦ࿏ߏங BPT ܦ࿏ͷ࣍ݩ : A5 PPM ܦ࿏ͷ࣍ݩ : A6 ܦ࿏ߏஙͷ ࣍ݩ͕ҟͳΔ

Slide 75

Slide 75 text

wBSDF (x) = pBSDF (x) pBSDF (x)+ plight (x) MIS΢ΣΠτͷܭࢉʹPDFͷՃࢉΛؚΉ ࣍ݩͷҟͳΔྔͷՃࢉ͸ޚ๏౓ ࠶ܝɿόϥϯεώϡʔϦεςΟοΫ

Slide 76

Slide 76 text

BPT ܦ࿏ͷ࣍ݩ : A5 ֦ுBPT ܦ࿏ͷ࣍ݩ : A6 Vertex Perturbation ࢹઢύεͷ୺఺ΛͣΒͯ͠ޫઢύεͷ୺఺Λ௥Ճ
 Ծ૝తʹPPMͱ࣍ݩΛ߹ΘͤΔ

Slide 77

Slide 77 text

֦ு#15ͱ11.ͷ.*4

Slide 78

Slide 78 text

BATHROOM Bidirectional Path Tracing

Slide 79

Slide 79 text

BATHROOM Progressive Photon Mapping

Slide 80

Slide 80 text

BATHROOM Unified Path Sampling

Slide 81

Slide 81 text

PATH SPACE REGULARIZATION

Slide 82

Slide 82 text

Specular BRDF Mollified BRDF BSDF MOLLIFICATION #4%'Λ؇࿨ͯ͠د༩ΛऔΕΔΑ͏ʹ ͨͩ͠CJBTFE ൓෮͝ͱʹຊདྷͷ#4%'΁͚͍ۙͮͯ͘ ʹຊ࣭తʹ͸11.ͷ൒ܘॖݮͱಉ͡ σΟϑϡʔζ໘ʹ͸ద༻͠ͳ͍àඞཁ࠷௿ݶͷόΠΞε

Slide 83

Slide 83 text

Original MLT

Slide 84

Slide 84 text

AMCMCPPM

Slide 85

Slide 85 text

VCM(UPS)

Slide 86

Slide 86 text

Regularized MLT

Slide 87

Slide 87 text

Regularized MLT + ME

Slide 88

Slide 88 text

MULTIPLEXED MLT

Slide 89

Slide 89 text

144.-5Ͱ͸ͭͷఏҊ෼෍ͱ࠾୒ɾغ٫Λ૊Έ߹Θͤͯ ໨ඪ෼෍ ܦ࿏ͷը૾΁ͷد༩ Λୡ੒͢Δ ఏҊ෼෍ɿ #15౳ʹΑΔͭͷϚοϐϯά #15౳Ͱ࣮ݱ͞ΕΔϚοϐϯά ఏҊ෼෍ ͕͋·Γྑ͘ͳ͍ àغ٫͕૿͑Δ

Slide 90

Slide 90 text

ఏҊ෼෍ɿ ෳ਺ͷϚοϐϯάͷࠞ߹ 144಺ͷมҟʹՃ͑ͯϚοϐϯάͷมߋ΋ߦ͏ PRIMARY SPACE SERIAL TEMPERING

Slide 91

Slide 91 text

PSSMLT

Slide 92

Slide 92 text

Original MLT

Slide 93

Slide 93 text

Multiplexed MLT

Slide 94

Slide 94 text

͓ΘΓʹ ຊεϥΠυͰ৮Εͨͷ͸਺͋Δख๏ͷҰ෦ ϘϦϡʔϜϨϯμϦϯάʹؔͯ͠͸Ұ੾৮Εͯͳ͍ Energy Redistribution Path Tracing / Bidirectional Photon Mapping / ! Manifold Exploration Path Tracing / Replica Exchange Light Transport / ! Population Monte Carlo - ER / Noise Aware MLT / ! Bidirectional Light Cuts / Gradient-domain MLT … ࠷৽ख๏͸جຊతʹ.*4BOEPS 144 .-5 ͷཧ࿦࢖͍ͬͯΔΠϝʔδ

Slide 95

Slide 95 text

REFERENCES 1/3 n  [ERPT] CLINE, D., TALBOT, J., AND EGBERT, P. 2005. Energy redistribution path tracing. ACM Trans. Graph. (SIGGRAPH Proceedings) 24, 3, 1186–1195.! n  [VCM] GEORGIEV, I., KŘIVÁNEK, J., AND SLUSALLEK, P. 2011. Bidirectional light transport with vertex merging. In ACM SIGGRAPH Asia 2011 Sketches, 27:1–27:2.! n  [SPPM] HACHISUKA, T., AND JENSEN, H. W. 2009. Stochastic progressive photon mapping. In ACM SIGGRAPH Asia Papers. ACM, New York, 1–8.! n  [AMCMCPPM] HACHISUKA, T., AND JENSEN, H. W. 2011. Robust adaptive photon tracing using photon path visibility. ACM Transaction on Graphics 30 (October), 114:1–114:11.! n  [MMLT] HACHISUKA, T., KAPLANYAN, A. S., AND DACHSBACHER, C. 2014. Multiplexed Metropolis light transport. ACM Trans. Graph. (Proc. of SIGGRAPH 2014) 33, 4.! n  [PPM] HACHISUKA, T., OGAKI, S., AND JENSEN, H. W. 2008. Progressive photon mapping. ACM Trans. Graph. (Proc. of SIGGRAPH Asia) 27, 5.! n  [UPS] HACHISUKA, T., PANTALEONI, J., AND JENSEN, H. W. 2012. A path space extension for robust light transport simulation. ACM Trans. Graph. (Proc. of SIGGRAPH Asia) 31, 6 (Nov.).! n  [Noise Aware MLT] HOBEROCK, J., AND HART, J. C. 2010. Arbitrary importance functions for Metropolis light transport. Comput. Graph. Forum 29, 6, 1993–2003.! n  [MEPT] JAKOB, W., AND MARSCHNER, S. 2012. Manifold exploration: a Markov chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Transactions on Graphics (Proc. SIGGRAPH) 31, 4, 58:1–58:13.!

Slide 96

Slide 96 text

REFERENCES 2/3 n  [PM] JENSEN, H. W. 1996. Global illumination using photon maps. In Proceedings of the Eurographics Workshop on Rendering Techniques ’96, Springer-Verlag, London, UK, 21–30.! n  [PT] KAJIYA, J. T. 1986. The rendering equation. In Computer Graphics (Proc. of SIGGRAPH).! n  [Regularization] KAPLANYAN, A. S., AND DACHSBACHER, C. 2013. Path space regularization for holistic and robust light transport. Computer Graphics Forum (Proc. of Eurographics) 32, 2.! n  [PSSMLT] KELEMEN, C., SZIRMAY-KALOS, L., ANTAL, G., AND CSONKA, F. 2002. A simple and robust mutation strategy for the metropolis light transport algorithm. In Eurographics 2002, vol. 21, 531–540.! n  [RELT] KITAOKA, S., KITAMURA, Y., AND KISHINO, F. 2009. Replica exchange light transport. Computer Graphics Forum 28, 8, 2330–2342.! n  [PPPM] KNAUS, C., AND ZWICKER, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Transaction on Graphics 30 (May), 25:1–25:13.! n  [PMC-ER] LAI, Y.-C., FAN, S. H., CHENNEY, S., AND DYER, C. 2007. Photorealistic image rendering with population Monte Carlo energy redistribution. In In Rendering Techniques 2007 (Proceedings of the Eurographics Symposium on Rendering), 287–295.! n  [Gradient-domain MLT] LEHTINEN, J., KARRAS, T., LAINE, S., AITTALA, M., DURAND, F., AND AILA, T. 2013. Gradient-domain Metropolis light transport. ACM Transactions on Graphics (Proc. SIGGRAPH) 32, 4.! n  [MIS, BPT] VEACH, E. 1997. Robust Monte Carlo methods for light transport simulation. PhD thesis, Stanford, CA, USA.!

Slide 97

Slide 97 text

REFERENCES 3/3 n  [BPM] VORBA, J. 2011. Bidirectional photon mapping. In Proc. of the Central European Seminar on Computer Graphics (CESCG ‘11).! n  [BLC] WALTER, B., KHUNGURN, P., AND BALA, K. 2012. Bidirectional lightcuts. ACM Transactions on Graphics (Proc. SIGGRAPH) 31, 4, 59:1–59:11.!