Slide 1

Slide 1 text

VISUALIZING ECOM DATA MEET IMPACT EXTEND

Slide 2

Slide 2 text

ME Rasmus Bøgelund Christiansen From Denmark, Copenhagen Measure Camp London (R Course) Rome (Data visualization Course) IMPACT Extend A/S 2018 – Now | Implementation and Data Strategist IIH Nordic 2017 – 2018 | Analytics Specialist Asseco Denmark 2016 – 2017 | Sales And Marketing Representative IBM Denmark 2015 – 2016 | Project Manager for SME Team

Slide 3

Slide 3 text

E C O M M E R C E S H O P S IMPACT Extend is working with large brands to ensure revenue growth working across channels K N O W I N G T H E I R K P I S When working with eCommerce and the CMO there are normally clear KPI on which we can report C O L L E C T D ATA Using R we can fairly easy get data from Google Analytics and push it to a database from which we can connect V I S U A L I Z E Using PowerBI the customer data is visualized, updated daily, and maintained. AGENDA

Slide 4

Slide 4 text

WORKING WITH ECOMMERCE SHOPS

Slide 5

Slide 5 text

PROCESS FOR TRACKING IMPLEMENTATION Scoping and development of datalayer Setting up Google Tag Manager Setting up Google Analytics Testing and validating setup Moving and publishing new setup

Slide 6

Slide 6 text

PRODUCT LIST CLICKS Måler kliks på produktlister (inklusiv Raptor karusseller) dataLayer.push({ 'event': 'productClick', 'ecommerce': { 'currencyCode': 'DKK', 'click': { 'products': [{ 'id': '63495710', 'name': 'Arbejdsbuks Erlangen', 'price': '59.75', 'brand': 'MASCOT', 'category': 'Underdele', 'position': 0, 'list': 'Underdele' }] } } });

Slide 7

Slide 7 text

API Calls for retrieve the data

Slide 8

Slide 8 text

GETTING THE DATA ga <- function(viewId,segment){ google_analytics(viewId, date_range = c(date_start_t,date_end_t), metrics = metrics_ga, dimensions = dimensions_ga,segments = segment,anti_sample = TRUE)} ga_data_Customer_DK_t <- ga(ga_id_Customer_dk,DK_Segment) ga_data_RoyalCPH_DK_t$Brand <- "Customer Brand" ga_data_RoyalCPH_DK_t$Country <- "DK" ga_data_RoyalCPH_DK_t$segment <- NULL bqDataset <- "Customer Dataset" bqTable <- "Customer Table" bqProject <- "Google Big Query Project" bqr_upload_data(bqProject, bqDataset ,bqTable, ga_data, overwrite = TRUE)

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

WHO WE HELP SELECTED CLIENTS

Slide 11

Slide 11 text

No content