Slide 1

Slide 1 text

AI, Angular und Unternehmenswissen intelligent vernetzen Marco Frodl Christian Liebel @marcofrodl @christianliebel Consultant Consultant Generative AI in der Praxis

Slide 2

Slide 2 text

Hello, it’s me. Principal Consultant for Generative AI Thinktecture AG X: @marcofrodl E-Mail: [email protected] LinkedIn: https://www.linkedin.com/in/marcofrodl/ https://www.thinktecture.com/thinktects/marco-frodl/ Marco Frodl

Slide 3

Slide 3 text

Hello, it’s me. Christian Liebel X: @christianliebel Email: christian.liebel @thinktecture.com Angular & PWA Slides: thinktecture.com /christian-liebel

Slide 4

Slide 4 text

Why is it important? Generative AI AI understands and generates natural language AI can access knowledge from the training phase

Slide 5

Slide 5 text

Workshop Showcase AI-powered Portal

Slide 6

Slide 6 text

It could be worse ACME Coding Guideline Portal QA-Workflow-Requirements for ACME Coding Portal • Natural language I/O • Different languages • Semantic search • Multi-source integration • Context based source selection • Source quality assessment • Source attribution • Trust level indicators • Cross-source answer synthesis • Coding Guideline Wiki via RAG • External Guidelines via RAG • Project Details via API • Project Manager Details via API • Fallback: Websearch • All integrated in current Portal

Slide 7

Slide 7 text

One Search Box for Everything ACME – Rise of Sources Guidelines Wiki Angular.dev Project Management API Static RAG Trust Level 🥇 General Websearch Live RAG Trust Level 🥈 Live API Access Trust Level 🥇 Everything Else Trust Level 🥉

Slide 8

Slide 8 text

Backend: Python in Cloud AIaaS: OpenAI & MistralAI Frontend: with/about Angular LangGraph Real World Sample User: „Was ist besser signal inputs oder inputs()?“ AI: „Laut den ACME-Richtlinien sollten Signal-Inputs anstelle von `@Input()` verwendet werden.

Slide 9

Slide 9 text

Generative AI In the World of AI

Slide 10

Slide 10 text

Artificial Intelligence (AI) Classification Generative AI Machine Learning Deep Learning GenAI Intelligent Machines Pattern Recognition in Data Pattern Recognition in unstructured Data Human language understanding and generation

Slide 11

Slide 11 text

Generative AI Mindset

Slide 12

Slide 12 text

Natural Language is the new Code User Input GenAI Processing Generated Output LLM Prompt

Slide 13

Slide 13 text

Natural Language is the new Code User Input GenAI Processing Generated Output LLM

Slide 14

Slide 14 text

Natural Language is the new Code Juni 2022 Vs. Juli 2024 Generiere ein Bild von einer älteren Katze im Business-Anzug, die hinter einem großen Schreibtisch in einem ledernen braunen Chefsessel sitzt und dem Betrachter direkt in die Augen schaut. Auf dem Schreibtisch sehen wir einen Macbook Pro und eine moderne Schreibtischlampe. Die Wand hinter der Katze ist geschmückt mit Urkunden und einem Familienfoto, die alle gerahmt sind.

Slide 15

Slide 15 text

Natural Language is the new Code User Input GenAI Processing Generated Output LLM

Slide 16

Slide 16 text

Natural Language is the new Code User Input GenAI Processing Generated Output LLM

Slide 17

Slide 17 text

Natural Language is the new Code User Input GenAI Processing Generated Output LLM

Slide 18

Slide 18 text

Natural Language is the new Code User Input GenAI Processing Generated Output LLM

Slide 19

Slide 19 text

Natural Language is the new Code User Input GenAI Processing Generated Output LLM

Slide 20

Slide 20 text

Natural Language is the new Code User Input GenAI Processing Generated Output LLM

Slide 21

Slide 21 text

Natural Language is the new Code Juni 2022 Vs. Juli 2024

Slide 22

Slide 22 text

Natural Language is the new Code User Input GenAI Processing Generated Output LLM

Slide 23

Slide 23 text

LLMs Large Language Models

Slide 24

Slide 24 text

It’s just text – “Language” § LLMs can understand text – this changes a lot § LLMs generate text based on input § Most LLMs can break down complex problems using CoT § Some LLMs can reason about the best strategy to solve a problem § Prompts are the universal interface (“UI”) → unstructured text with semantics § Human language evolves as a first-class citizen in software architecture 🤯 Large Language Models

Slide 25

Slide 25 text

It’s just text – “Language” § LLMs are programs § LLMs are highly specialized neural networks § LLMs are pre-filled with a parametric knowledge (“frozen knowledge”) § LLMs need a lot of resources to be operated § LLMs have an API to be used through Large Language Models

Slide 26

Slide 26 text

Demo Chain of Thought (CoT)

Slide 27

Slide 27 text

No content

Slide 28

Slide 28 text

Demo Reasoning Teaser: Tom: 20 Murmeln Max: 16 Murmeln Leo: 28 Murmeln

Slide 29

Slide 29 text

Demo 2 Reasoning

Slide 30

Slide 30 text

GenAI The Building Blocks

Slide 31

Slide 31 text

Tokens Currency for GenAI

Slide 32

Slide 32 text

Die schwarze Katze schläft auf dem Sofa im Wohnzimmer. Tokenizer Microsoft Phi-2 Tokens in Text & as Values 32423, 5513, 5767, 2736, 8595, 2736, 5513, 75, 11033, 701, 257, 3046, 1357, 1406, 13331, 545, 370, 1562, 89, 10957, 13 Token Count 21 OpenAI GPT-3.5T 18674, 82928, 3059, 17816, 3059, 5817, 44283, 728, 7367, 2486, 61948, 737, 53895, 65574, 13 15 OpenAI GPT-4o 8796, 193407, 181909, 161594, 826, 2933, 2019, 71738, 770, 138431, 13 11 https://tiktokenizer.vercel.app/ OpenAI GPT-3.5T 791, 3776, 8415, 374, 21811, 389, 279, 32169, 304, 279, 5496, 3130, 13 13

Slide 33

Slide 33 text

Context Window Tell me more!

Slide 34

Slide 34 text

Definition “The context window of LLMs is the number of tokens the model can take as input when generating responses.” Context Window Size

Slide 35

Slide 35 text

Context Window Size Input Tokens Output Tokens Processing

Slide 36

Slide 36 text

LLMs Calling LLM as API

Slide 37

Slide 37 text

Let’s say “Hello” to a LLM Large Language Models OpenAI Anthropic MistralAI https://github.com/jamesmurdza/llm-api-examples/blob/main/README-python.md

Slide 38

Slide 38 text

LangChain Abstractions for GenAI

Slide 39

Slide 39 text

Hello LangChain https://www.langchain.com/

Slide 40

Slide 40 text

Hello LangChain https://python.langchain.com/docs/integrations/chat/

Slide 41

Slide 41 text

Lab: LangChain Chat https://angular-days-2025.brick.do

Slide 42

Slide 42 text

LLMs Selection criteria

Slide 43

Slide 43 text

Model Selection https://artificialanalysis.ai/models

Slide 44

Slide 44 text

Your requirements are crucial Model Selection Performance (Tokens per Second - t/s) – Speed of response generation. Pricing – Pay-per-use, subscription, on-premises costs, and overall cost efficiency. Reasoning Capabilities – Logical reasoning, problem-solving, and multi-step thought processes. Tool Use – Ability to use external tools (e.g., APIs, code execution, web browsing, database querying). Context Window Size – Maximum number of tokens the model can process at once. License & Cost – Open-source vs. proprietary, usage fees, and commercial viability. Fine-tuning & Adaptability – Ability to fine-tune on domain-specific data. On-Premises Deployment – Availability for local hosting instead of cloud-only access. Multimodal Capabilities – Ability to process text, images, audio, or video. Prompt Caching & Efficiency – Ability to reduce redundant processing, and optimize query handling. Multilingual Support – Capability to understand and generate multiple languages. Data Privacy & Compliance – Adherence to GDPR, HIPAA, and other regulatory requirements. Efficiency (Compute & Memory Requirements) – Hardware requirements for inference and training.

Slide 45

Slide 45 text

Your requirements are crucial Model Selection Performance Pricing Reasoning Capabilities Tool Use Context Window Size License & Cost Fine-tuning & Adaptability On-Premises Deployment Multimodal Capabilities Prompt Caching & Efficiency

Slide 46

Slide 46 text

LLMs Pricing

Slide 47

Slide 47 text

Model Selection https://www.vellum.ai/llm-leaderboard

Slide 48

Slide 48 text

Model Selection

Slide 49

Slide 49 text

• 5 Open Source Models • 8 Hosted Models • 2 Models for Code Generation • 1 Embedding Model • Fine-Tuning API • Models fluent in English, French, Italian, German, Spanish • Similar prompting • Run: Mistral AI, Azure, AWS, On-Prem • Located in Paris/France • Your data will not used for training (API)

Slide 50

Slide 50 text

No content

Slide 51

Slide 51 text

Embeddings Language to Bytes

Slide 52

Slide 52 text

66 § Classic search: lexical § Compares words, parts of words and variants § Classic SQL: WHERE ‘content’ LIKE ‘%searchterm%’ § We can search only for things where we know that its somewhere in the text § New: Semantic search § Compares for the same contextual meaning § “Das Rudel rollt das runde Gerät auf dem Rasen herum” § “The pack enjoys rolling a round thing on the green grass” § “Die Hunde spielen auf der Wiese mit dem Ball” § “The dogs play with the ball on the meadow” Semantic Search

Slide 53

Slide 53 text

[ 0.50451 , 0.68607 , -0.59517 , -0.022801, 0.60046 , -0.13498 , -0.08813 , 0.47377 , -0.61798 , -0.31012 , -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229 , 0.81722 , -0.51874 , -0.31503 , -0.55809 , 0.66421 , 0.1961 , -0.13495 , -0.11476 , -0.30344 , 0.41177 , -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 , 1.9927 , -0.04234 , -0.64319 , 0.71125 , 0.49159 , 0.16754 , 0.34344 , -0.25663 , -0.8523 , 0.1661 , 0.40102 , 1.1685 , -1.0137 , -0.21585 , -0.15155 , 0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042 ] Embedding-Model

Slide 54

Slide 54 text

Embedding-Model Choice A Choice B

Slide 55

Slide 55 text

Embedding-Model

Slide 56

Slide 56 text

Vector DBs Find nearest vectors quickly

Slide 57

Slide 57 text

Vector DB https://qdrant.tech/documentation/overview/ • Efficient storage and indexing of high-dimensional data. • Ability to handle large-scale datasets with billions of data points. • Support for real-time analytics and queries.

Slide 58

Slide 58 text

Vector DB https://qdrant.tech/documentation/overview/

Slide 59

Slide 59 text

Lab: Embedding & VectorDB https://angular-days-2025.brick.do

Slide 60

Slide 60 text

RAG RetrievalQA

Slide 61

Slide 61 text

What is RAG? “Retrieval-Augmented Generation (RAG) extends the capabilities of LLMs to an organization's internal knowledge, all without the need to retrain the model.

Slide 62

Slide 62 text

What is RAG? https://aws.amazon.com/what-is/retrieval-augmented-generation/ “Retrieval-Augmented Generation (RAG) extends the capabilities of LLMs to an organization's internal knowledge, all without the need to retrain the model. It references an authoritative knowledge base outside of its training data sources before generating a response”

Slide 63

Slide 63 text

Answering Questions on Data Retrieval-augmented generation (RAG) Cleanup & Split Text Embedding Question Text Embedding Save Query Relevant Text Question Answer LLM 79 Vector DB Embedding model Embedding model 💡 Indexing / Embedding QA Intro

Slide 64

Slide 64 text

Ask me anything Simple RAG Question Prepare Search Search Results Question Answer LLM Vector DB Embedding Model Question as Vector Workflow Terms - Retriever - Chain Elements Embedding- Model Vector- DB Python LLM Langchain 🦜🔗

Slide 65

Slide 65 text

Lab: Simple RAG https://angular-days-2025.brick.do

Slide 66

Slide 66 text

Tool Calling Let’s change the world

Slide 67

Slide 67 text

Demo: ACME APIs https://tt-project-api.azurewebsites.net/projects/siemens https://tt-project-api.azurewebsites.net/project-chairs/tt-si-24f

Slide 68

Slide 68 text

§ Idea: Give LLM more capabilities § To access data and other functionality § Within your applications and environments Extending capabilities “Do x!” LLM “Do x!” System prompt Tool 1 metadata Tool 2 metadata... { “answer”: “toolcall”, “tool” : “tool1” “args”: […] }

Slide 69

Slide 69 text

Tool Calling in Action LLM My code Query Some API Some database Prompt Tools Final answer Answer ❓ ❓ ❗ 💡

Slide 70

Slide 70 text

LangGraph Agentic Orchestration

Slide 71

Slide 71 text

Hello LangGraph https://www.langchain.com/langgraph

Slide 72

Slide 72 text

LangChain vs LangGraph https://www.langchain.com/

Slide 73

Slide 73 text

Demo: Tool Calling Notebook Tool Calling

Slide 74

Slide 74 text

Workshop Portal LangGraph + Angular

Slide 75

Slide 75 text

Enterprise AI Workflows

Slide 76

Slide 76 text

Enterprise AI Workflows QA-Workflow-Requirements for Unified company knowledge access • Natural language I/O • Different languages • Semantic search • Multi-source integration • Context based source selection • Source quality assessment • Source attribution • Trust level indicators • Cross-source answer synthesis • Web search capability • RAG integration (databases) • API connectivity (realtime data) • AI-driven API sequencing • Fallback workflow paths • Workflow orchestration logic • Plug-and-play source extension

Slide 77

Slide 77 text

It could be worse ACME Coding Guideline Portal QA-Workflow-Requirements for ACME Coding Portal • Natural language I/O • Different languages • Semantic search • Multi-source integration • Context based source selection • Source quality assessment • Source attribution • Trust level indicators • Cross-source answer synthesis • Coding Guideline Wiki via RAG • External Guidelines via RAG • Project Details via API • Project Manager Details via API • Fallback: Websearch • All integrated in current Portal

Slide 78

Slide 78 text

One Search Box for Everything ACME – Rise of Sources Guidelines Wiki Angular.dev Project Management API Static RAG Trust Level 🥇 General Websearch Live RAG Trust Level 🥈 Live API Access Trust Level 🥇 Everything Else Trust Level 🥉

Slide 79

Slide 79 text

Coding Guideline Wiki ACME – Rise of Sources Idea behind this approach • Easy creation of Articles • Workflow: Draft, Review, Publish • Revisions • Link Management • Author Management • Tags & Categories • APIs: REST, RSS, Custom • Open Source • Regular Updates • Plugin Ecosystem = Great Authoring Experience and Headless Content Source

Slide 80

Slide 80 text

Business RAG - Simple AI Workflows Question Search Documents Generate Answer Answer AI (LLM) Vector DB Embedding Model Vector Benefits: • Semantic Search • Short, concise answers • Input Language <> Document Language • Multiple Input Languages

Slide 81

Slide 81 text

I wanna know Question Answer • Was ist besser signal inputs oder inputs()? • Wie viele Komponenten brauche ich mindestens für das Setup von Routing? • Höhe des Berliner Fernsehturms • Wer leitet das Post-Projekt

Slide 82

Slide 82 text

Demo: Simple RAG

Slide 83

Slide 83 text

Demo: Angular Frontend with AI Connection

Slide 84

Slide 84 text

We need more QA-Workflow-Requirements for Unified company knowledge access • Natural language I/O ✅ • Different languages ✅ • Semantic search ✅ • Multi-source integration • Context based source selection • Source quality assessment • Source attribution ✅ • Trust level indicators ✅ • Cross-source answer synthesis • Web search capability • RAG integration (databases) ✅ • API connectivity (realtime data) • AI-driven API sequencing • Fallback workflow paths • Workflow orchestration logic ✅ • Plug-and-play source extension

Slide 85

Slide 85 text

Hello AI Workflows Question Answer • Agentic Flows • Loosely coupled Nodes • Conversation History • Long-term Memory • State Management • Parallel Execution • Subgraphs • Graph Persistence • Human in the Loop • Time Traveling

Slide 86

Slide 86 text

External Sources Internal Sources AI Workflows with LangGraph Question Answer

Slide 87

Slide 87 text

External Sources Internal Sources AI Workflows with LangGraph Question Answer Wer leitet das Post-Projekt?

Slide 88

Slide 88 text

External Sources Internal Sources AI Workflows with LangGraph Question Wiki Trust Level: 1 Answer Websearch Trust Level: 3 Documents Trust Level: 2 API A Projects (T1) API B Contacts (T1) Wer leitet das Post-Projekt?

Slide 89

Slide 89 text

External Sources Internal Sources AI Workflows with LangGraph Question Wiki Trust Level: 1 Answer Websearch Trust Level: 3 Documents Trust Level: 2 API A Projects (T1) API B Contacts (T1) ? Wer leitet das Post-Projekt?

Slide 90

Slide 90 text

External Sources Internal Sources AI Workflows with LangGraph Question Wiki Trust Level: 1 Answer Websearch Trust Level: 3 Documents Trust Level: 2 API A Projects (T1) API B Contacts (T1) ? ? Wer leitet das Post-Projekt?

Slide 91

Slide 91 text

External Sources Internal Sources AI Workflows with LangGraph Question Wiki Trust Level: 1 Answer Websearch Trust Level: 3 Documents Trust Level: 2 API A Projects (T1) API B Contacts (T1) ? ? ? Wer leitet das Post-Projekt?

Slide 92

Slide 92 text

External Sources Internal Sources AI Workflows with LangGraph Question Wiki Trust Level: 1 Answer Websearch Trust Level: 3 Documents Trust Level: 2 API A Projects (T1) API B Contacts (T1) ? ? ? ? Wer leitet das Post-Projekt?

Slide 93

Slide 93 text

External Sources Internal Sources AI Workflows with LangGraph Question Wiki Trust Level: 1 Answer AI Topic Router Websearch Trust Level: 3 AI Content Grader Documents Trust Level: 2 AI API Sequencing AI Generate API A Projects (T1) API B Contacts (T1) Wer leitet das Post-Projekt?

Slide 94

Slide 94 text

Bottom Line Dev Skill-Set for GenAI

Slide 95

Slide 95 text

• The New Coding Language is Natural Language • Prompt Engineering • Knowledge of Python • Ethics and Bias in AI • Data Management and Preprocessing • Model Selection and Handling • Explainability and Interpretability • Continuous Learning and Adaptation • Security and Privacy The Skill-Set of a Developer in GenAI Times

Slide 96

Slide 96 text

Workshop-Bewertung nicht vergessen! Euer Feedback ist wichtig für weitere Talks.

Slide 97

Slide 97 text

Thank you for your kind attention! Christian Liebel @christianliebel [email protected] Marco Frodl @marcofrodl [email protected]