Slide 1

Slide 1 text

Remote Intro Talk II… ISM✻@ST Intro Talk 2021 Chris Clark

Slide 2

Slide 2 text

Chris Clark Clark & Redfern (1988) Helston

Slide 3

Slide 3 text

Chris Clark Cardiff

Slide 4

Slide 4 text

Chris Clark

Slide 5

Slide 5 text

Chris Clark

Slide 6

Slide 6 text

Chris Clark

Slide 7

Slide 7 text

Chris Clark

Slide 8

Slide 8 text

Chris Clark

Slide 9

Slide 9 text

Chris Clark BBC (2009)

Slide 10

Slide 10 text

Chris Clark Dust in Type-Ia SNe? Gomez & Clark+ (2012a); Clark (PhD T., 2015) Kepler’s Supernova (SN1604) Tycho’s Supernova (SN1572) (optical & X-ray images)

Slide 11

Slide 11 text

Chris Clark Herschel Maps of Type-Ia SNe Remnants Gomez & Clark+ (2012a); Clark (PhD T., 2015) Tycho’s SNR in Herschel-SPIRE (250, 350, 500 μm) Kepler’s SNR in Herschel-SPIRE (250, 350, 500 μm)

Slide 12

Slide 12 text

Chris Clark Type-Ia SNe: Resolved Temps Gomez & Clark+ (2012a); Clark (PhD T., 2015) Kepler’s supernova; Thot (left) and Tcold (right) Tycho’s supernova; Thot (left) and Tcold (right) (Forgive the jet colour scale; I was young and didn’t know better!) Negligible dust manufactured by Type-Ia supernovæ Which means all the iron depleted into dust got there some other way

Slide 13

Slide 13 text

Chris Clark Dust in a Type-II SN: The Crab (SN1054) Gomez+ inc. Clark (2012b); Clark (PhD T., 2015) Herschel-PACS (70, 100, 160 μm) Herschel-SPIRE (250, 350, 500 μm)

Slide 14

Slide 14 text

Chris Clark Dust in a Type-II SN: The Crab (SN1054) Clark (PhD T., 2015)

Slide 15

Slide 15 text

Chris Clark The Crab: Component Separation Gomez+ inc. Clark (2012b); Clark (PhD T., 2015) Synchrotron @ 160 μm Hot dust @ 160 μm Cold dust @ 160 μm We found 0.11 M☉ of supernova dust in the Crab Nebula Subsequent studies report values across 0.04–0.22 M☉ range

Slide 16

Slide 16 text

Chris Clark Herschel-ATLAS (Herschel Astrophysical Terahertz Large Area Survey) Eales+ (2010)

Slide 17

Slide 17 text

Chris Clark Dust-Detected H-ATLAS Low-z Galaxies Clark+ (2015) H-ATLAS 250 µm 15 < D < 45 Mpc SDSS gri-bands

Slide 18

Slide 18 text

Chris Clark BADGRS: Blue & Dusty Gas Rich Sources Clark+ (2015) Near-IR VIKING Ks Optical SDSS gri H-ATLAS 250 µm GALEX Far-UV Very blue (flux ratio FUV/Ks > 25), flocculent, HI-dominated galaxies make up the majority of a blind low-z blind 250 µm selected survey.

Slide 19

Slide 19 text

Chris Clark BADGRS: Lots of Dust, Little Attenuation Eales+ (2010); Clark+ (2015) More Attenuation Less Attenuation Dust Rich Dust Poor

Slide 20

Slide 20 text

Chris Clark BADGRS: Lots of Dust, Little Attenuation Clark+ (2015) MD /MS ~ 0.0005 MD /MS ~ 0.01

Slide 21

Slide 21 text

Chris Clark BADGRS: Lots of Dust, Little Attenuation Schofield (PhD, 2017) BADGR Non-BADGR

Slide 22

Slide 22 text

Chris Clark BADGRS: The Peak of Dust-Richness Clark+ (2015) Older Younger Dust Rich Dust Poor

Slide 23

Slide 23 text

Chris Clark BADGRS: The Peak of Dust-Richness Clark+ (2015); De Vis (2017) Older Younger Dust Rich Dust Poor

Slide 24

Slide 24 text

Chris Clark BADGRS: Many Chemical Evolution Paths? De Vis+ (2017); Schofield (PhD T., 2017) Older Younger Dust Rich Dust Poor

Slide 25

Slide 25 text

Chris Clark BADGRS: Super Low MH2 /Mdust ? Dunne+ (2018) IRAM 30m CO(1–0) ICO = 0.2–2 K km s-1 FWHM = 30–100 km s-1 MH2 /Mdust = 2–27 (Z-based XCO – MW XCO ) Z = 0.5–1 Z☉

Slide 26

Slide 26 text

Chris Clark BADGR Follow-Up: JINGLE (Preliminary) Saintonge+ (2018); Lamperti+ (2020); Clark+ (in prep.) More Attenuation Less Attenuation Dust Rich Dust Poor JINGLE JCMT dust & gas in Nearby Galaxies Legacy Exploration

Slide 27

Slide 27 text

Chris Clark Literature Values for κd (the Mass Opacity Coeff) Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019) Several dex total range in κd values. Commonly-used standard values span a factor of ~3 range

Slide 28

Slide 28 text

Chris Clark Estimating κd with the HRS (the Herschel Reference Survey) Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019) κ500 = 0.051 m2 kg-1 (± 0.24 dex)

Slide 29

Slide 29 text

Chris Clark Biology‽

Slide 30

Slide 30 text

Chris Clark DustPedia Database Davies+ (2017); Clark+ (2018) • The DustPedia sample (Davies+, 2017) covers all 875 nearby (D<40 Mpc) extended (1’ < D25 < 1°) galaxies observed by Herschel. • Standardised imagery & photometry spanning 42 UV–microwave bands (Clark+, 2018). • Homogenised atomic & molecular gas values for 764 & 255 DustPedia galaxies respectively (; De Vis+, 2019; Casasola+, 2020). • 10000 consistently-determined gas- phase metallicity datapoints (from IFU, slit, and fibre spectra) for 492 DustPedia galaxies (De Vis+, 2019). UV-NIR-FIR montage of some of the galaxies in the DustPedia database

Slide 31

Slide 31 text

No content

Slide 32

Slide 32 text

Chris Clark DustPedia Photometry Clark+ (2018) Robust automated aperture photometry for extended sources.

Slide 33

Slide 33 text

Chris Clark DustPedia Photometry Clark+ (2018) Self-consistent photometry across many bands.

Slide 34

Slide 34 text

Chris Clark Literature Values for κd (the Mass Opacity Coeff) Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019) Several dex total range in κd values. Commonly-used standard values span a factor of ~3 range

Slide 35

Slide 35 text

Chris Clark Data for Mapping κd Within Galaxies Clark+ (2018); Clark+ (2019) M83 M74 But also need metallicity maps to calculate κd . These don’t normally exist for nearby galaxies…

Slide 36

Slide 36 text

Chris Clark Metallicity Mapping in Nearby Galaxies Clark+ (2019); De Vis+ (2019) Lots of individual metallicity points from individual metallicity spectra. But need to turn into metallicty map… M74 M83

Slide 37

Slide 37 text

Chris Clark Gaussian Process Regression in M74 Clark+ (2019); De Vis+ (2019) M74 Metallicity Map M74 Metallicity Uncertainty

Slide 38

Slide 38 text

Chris Clark Maps of κd in Nearby Galaxies! Clark+ (2018); Clark+ (2019) M74 κd map M83 κd map UV-NIR-FIR image for reference UV-NIR-FIR image for reference

Slide 39

Slide 39 text

Chris Clark κd vs ISM Surface Density Clark+ (2018); Clark+ (2019) Appears that κd is anticorrelated with ISM density. Opposite of what is predicted by models…

Slide 40

Slide 40 text

Chris Clark M74 & M83 κd Compared to Literature Alton+ (2004); Demyk+ (2013); Köhler+ (2015); Clark+ (2016); Jones+ (2017); Clark+ (2019)

Slide 41

Slide 41 text

Chris Clark So, You Want to Study Dust in the Magellanic Clouds? Roman-Duval+ (2017); Clark+ (in prep.) Herschel! …Except faint structure at the edges got removed as ‘background’, as the map was too small; large- scale features get filtered out. Okay, Planck then! …And Planck is great! But its shortest band is 350μm, so you can’t constrain dust temperature. And beam is 10x worse than Herschel. How about Spitzer? …Only covers the shorter wavelengths, and iffy resolution. Plus, severe non-linearity issues at high surface brightness for 160μm. But there’s always IRAS, right? …Unless you want to observe something that is extended and has very high surface brightness (kike the Magellanic Clouds), where IRAS has severe gain problems. Urm, I suppose I could try using Akari? … Good point. How about JCMT? Or ISO? …Never observed more than tiny parts of the Magellanic Clouds. I suppose that leaves…

Slide 42

Slide 42 text

Chris Clark Only ‘Trustworthy’ Data is COBE & Planck! Meixner+ (2014); Roman-Duval+ (2017); Williams+ (2018); Clark+ (in prep.) Herschel-SPIRE 250 µm COBE-DIRBE 240 µm

Slide 43

Slide 43 text

Chris Clark Combine Alllll the Data in Fourier Space… Clark+ (in prep.) COBE Far-infrared data, large angular scales IRAS Far-infrared data, medium angular scales Planck Submm data, large & medium angular scales COBE x IRAS FIR data, large and medium angular scales (COBE x IRAS) + Planck FIR-submm data, large & medium angular scales Herschel FIR-submm data, small angular scales ((COBE x IRAS) + Planck) x Herschel FIR-submm data, large & medium & small angular scales x → “Feathered with” + → “In concert with”

Slide 44

Slide 44 text

Chris Clark Some Bands Observed at All Scales Clark+ (in prep.) COBE 100 µm IRAS 100 µm COBE feathered with IRAS COBE feathered with IRAS

Slide 45

Slide 45 text

Chris Clark Combine Alllll the Data in Fourier Space… Clark+ (in prep.)

Slide 46

Slide 46 text

Chris Clark Restoring Extended Emission by Feathering Meixner+ (2014); Roman-Duval+ (2017); Williams+ (2018); Clark+ (in prep.) Herschel only; little diffuse emission Herschel et al; Fourier-combined

Slide 47

Slide 47 text

Chris Clark Relative Difference When Feathering Meixner+ (2014); Roman-Duval+ (2017); Williams+ (2018); Clark+ (in prep.) LMC SMC M31 M33

Slide 48

Slide 48 text

Chris Clark Foreground Subtraction Roman-Duval+ (2017); Clark+ (in prep.)

Slide 49

Slide 49 text

Chris Clark SED Fitting Using Pixels Binned by HI Clark+ (in prep.) FIR HI Dust Density Dust Temperature

Slide 50

Slide 50 text

Chris Clark SED Fitting Using Pixels Binned by HI Clark+ (in prep.) FIR HI Dust Density Dust Temperature

Slide 51

Slide 51 text

Chris Clark Evolution in Gas/Dust in Extreme Densities Roman-Duval+ (2017); Clark+ (in prep.) LMC SMC From fitting SEDs of fluxes averaged in bins of H column Julia’s 2017 Results

Slide 52

Slide 52 text

Chris Clark Stacking AGB Stars Scicluna+ (subm.); Clark+ (in prep.) Radial profile of Planck 350 μ m stack Very-work-in-progress stacked SED Planck 350 μm stack

Slide 53

Slide 53 text

Chris Clark Looking for Dust in Leo P Clark+ (in prep.)

Slide 54

Slide 54 text

Chris Clark Carbon Depletions via 158um [CII] Absorption Jenkins (2009); Clark+ (in prep.)

Slide 55

Slide 55 text

Questions welcome!

Slide 56

Slide 56 text

No content

Slide 57

Slide 57 text

Chris Clark The Crab: Synchrotron Power Law Gomez+ inc. Clark (2012b); Clark (PhD T., 2015) Spectral index map

Slide 58

Slide 58 text

Chris Clark BADGRS: Star Formation Still Ramping Up Schofield (PhD T., 2017)

Slide 59

Slide 59 text

Chris Clark Gaussian Process Regression – Reliable! Clark+ (2019); De Vis+ (2019)

Slide 60

Slide 60 text

Chris Clark Alternate Models Clark+ (2019) M74 DTM ∝ radius DTM ∝ ISM density “Toy” model M83 CHAOS Z

Slide 61

Slide 61 text

Chris Clark Alternate Models Clark+ (2019) DTM ∝ radius DTM ∝ ISM density “Toy” model

Slide 62

Slide 62 text

Chris Clark CO r2:1 Regression Leroy+ (2012); Clark+ (2019)

Slide 63

Slide 63 text

Chris Clark SED-Fitting Example Clark+ (2019)

Slide 64

Slide 64 text

Chris Clark Dust-to-Metals in THEMIS Jones+ (2017); Jones+ (2018) Dust-to-metals expected to vary by factor of ~3.6 in THEMIS dust model (Jones+ 2017;2018). Table 3 from Jones+ (2018)

Slide 65

Slide 65 text

Chris Clark Feathering In-Out Simulations Clark+ (in prep.)