Slide 1

Slide 1 text

There is no magic There is only awesome D e e p a k S i n g h Platforms for data science

Slide 2

Slide 2 text

bioinformatics image: Ethan Hein

Slide 3

Slide 3 text

3

Slide 4

Slide 4 text

collection

Slide 5

Slide 5 text

curation

Slide 6

Slide 6 text

analysis

Slide 7

Slide 7 text

what’s the big deal?

Slide 8

Slide 8 text

No content

Slide 9

Slide 9 text

Source: http://www.nature.com/news/specials/bigdata/index.html

Slide 10

Slide 10 text

Image: Yael Fitzpatrick (AAAS)

Slide 11

Slide 11 text

Image: Yael Fitzpatrick (AAAS)

Slide 12

Slide 12 text

lots of data

Slide 13

Slide 13 text

lots of people

Slide 14

Slide 14 text

lots of places

Slide 15

Slide 15 text

constant change

Slide 16

Slide 16 text

we want to make our data more effective

Slide 17

Slide 17 text

versioning

Slide 18

Slide 18 text

provenance

Slide 19

Slide 19 text

filter

Slide 20

Slide 20 text

aggregate

Slide 21

Slide 21 text

extend

Slide 22

Slide 22 text

mashup

Slide 23

Slide 23 text

human interfaces

Slide 24

Slide 24 text

No content

Slide 25

Slide 25 text

image: Leo Reynolds

Slide 26

Slide 26 text

hard problem

Slide 27

Slide 27 text

really hard problem

Slide 28

Slide 28 text

so how do get there?

Slide 29

Slide 29 text

information platforms

Slide 30

Slide 30 text

Image: Drew Conway

Slide 31

Slide 31 text

dataspaces Further reading: Jeff Hammerbacher, Information Platforms and the rise of the data scientist, Beautiful Data

Slide 32

Slide 32 text

the unreasonable effectiveness of data Halevy, et al. IEEE Intelligent Systems, 24, 8-12 (2009)

Slide 33

Slide 33 text

accept all data formats

Slide 34

Slide 34 text

evolve APIs

Slide 35

Slide 35 text

beyond databases and the data warehouse

Slide 36

Slide 36 text

data as a programmable resource

Slide 37

Slide 37 text

data is a royal garden

Slide 38

Slide 38 text

compute is a fungible commodity

Slide 39

Slide 39 text

optimizing the most valuable resource

Slide 40

Slide 40 text

compute, storage, workflows, memory, transmission, algorithms, cost, …

Slide 41

Slide 41 text

people Credit: Pieter Musterd a CC-BY-NC-ND license

Slide 42

Slide 42 text

Image: Chris Dagdigian

Slide 43

Slide 43 text

my bias

Slide 44

Slide 44 text

cloud services

Slide 45

Slide 45 text

distributed systems

Slide 46

Slide 46 text

scale

Slide 47

Slide 47 text

global

Slide 48

Slide 48 text

consumption models

Slide 49

Slide 49 text

on-demand

Slide 50

Slide 50 text

what is the value of your data?

Slide 51

Slide 51 text

No content

Slide 52

Slide 52 text

No content

Slide 53

Slide 53 text

Credit: Angel Pizzaro, U. Penn

Slide 54

Slide 54 text

mapreduce for genomics http://bowtie-bio.sourceforge.net/crossbow/index.shtml http://contrail-bio.sourceforge.net http://bowtie-bio.sourceforge.net/myrna/index.shtml

Slide 55

Slide 55 text

No content

Slide 56

Slide 56 text

Bioproximity http://aws.amazon.com/solutions/case-studies/bioproximity/

Slide 57

Slide 57 text

No content

Slide 58

Slide 58 text

No content

Slide 59

Slide 59 text

30,472 cores

Slide 60

Slide 60 text

$1279/hr

Slide 61

Slide 61 text

http://cloudbiolinux.org/

Slide 62

Slide 62 text

http://usegalaxy.org/cloud

Slide 63

Slide 63 text

in summary

Slide 64

Slide 64 text

large scale data requires a rethink

Slide 65

Slide 65 text

data architecture

Slide 66

Slide 66 text

compute architecture

Slide 67

Slide 67 text

distributed, programmable infrastructure

Slide 68

Slide 68 text

cloud services

Slide 69

Slide 69 text

remove constraints

Slide 70

Slide 70 text

can we build data science platforms?

Slide 71

Slide 71 text

there is no magic there is only awesome

Slide 72

Slide 72 text

[email protected] Twitter:@mndoci http://slideshare.net/mndoci http://mndoci.com Inspiration and ideas from Matt Wood& Larry Lessig Credit” Oberazzi under a CC-BY-NC-SA license