Slide 1

Slide 1 text

Christoph Lühr @chluehr / bePHPug Berlin 2023 "Introduction & basic concepts" Search, Embeddings & Vector-DBs

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

We Create Digital Strength for Your Business

Slide 4

Slide 4 text

No content

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

(#) Internet

Slide 7

Slide 7 text

Unicode Character 'HAPPY PERSON RAISING ONE HAND' (U+1F64B)

Slide 8

Slide 8 text

"vintage style" Search

Slide 9

Slide 9 text

No content

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

No content

Slide 12

Slide 12 text

Full-Text-Index Token, Token, Token

Slide 13

Slide 13 text

Synonyms Usergroup = Meetup

Slide 14

Slide 14 text

Synonyms Horse = Pony

Slide 15

Slide 15 text

Filters year < 2023

Slide 16

Slide 16 text

Filters location = "Berlin"

Slide 17

Slide 17 text

Ranking Scoring: Token "PHP" = Boost +2

Slide 18

Slide 18 text

"Where to meet experts in Web & script languages?" NO CONTEXT

Slide 19

Slide 19 text

Vector Databases

Slide 20

Slide 20 text

Vector is_cute

Slide 21

Slide 21 text

Vector 1 Attribute

Slide 22

Slide 22 text

Vector 1 Dimension

Slide 23

Slide 23 text

Vector Float [ 0.736 ]

Slide 24

Slide 24 text

[ 0 ... 0.5 ... 1 ] is_cute?

Slide 25

Slide 25 text

[ 0 ... 0.5 ... 1 ] is_cute?

Slide 26

Slide 26 text

[ 0 ... 0.5 ... 1 ] is_cute?

Slide 27

Slide 27 text

[ 0 ... 0.5 ... 1 ] is_cute? ?

Slide 28

Slide 28 text

Vector Lat / Lon

Slide 29

Slide 29 text

Vector 2 Attributes

Slide 30

Slide 30 text

Vector 2 Dimensions

Slide 31

Slide 31 text

Vector [ 52.520, 13.404 ]

Slide 32

Slide 32 text

No content

Slide 33

Slide 33 text

No content

Slide 34

Slide 34 text

[ 52.520, 13.404 ]

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

Distance "Similarity"

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

No content

Slide 39

Slide 39 text

● cuteness: 0.999 ● domesticated: 0.865 ● pet: 0.950 ● likes_water: 0.021 ● foo: ... ● bar: ... ● ...

Slide 40

Slide 40 text

● cuteness: 0.999 ● domesticated: 0.865 ● pet: 0.950 ● likes_water: 0.021 ● foo: ... ● bar: ... ● ... The cat (Felis catus) is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae and is commonly referred to as the domestic cat or house cat to distinguish it from the wild members of the family. Cats are commonly kept as house pets but can also be farm cats or feral cats; the feral cat ranges freely and avoids human contact. Domestic cats are valued by humans for companionship and their ability to kill small rodents. About 60 cat breeds are recognized by various cat registries.

Slide 41

Slide 41 text

Vector 50 Dimensions

Slide 42

Slide 42 text

[ 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790 ] 50 Dimensions

Slide 43

Slide 43 text

[ 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790 ] 500 Dimensions

Slide 44

Slide 44 text

[ 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790 ] 2000 Dimensions

Slide 45

Slide 45 text

No content

Slide 46

Slide 46 text

[ 1, 2, ... n=2000 ] Distance?

Slide 47

Slide 47 text

No content

Slide 48

Slide 48 text

Vectors?

Slide 49

Slide 49 text

Manual Classification (data)

Slide 50

Slide 50 text

Machine Learning (traditional)

Slide 51

Slide 51 text

Embeddings! Large Language Models

Slide 52

Slide 52 text

Embeddings! Multi-Modal Models

Slide 53

Slide 53 text

OpenAI GPT-3 Embeddings API [ 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790 ]

Slide 54

Slide 54 text

CLIP Embeddings API [ 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790 ]

Slide 55

Slide 55 text

CLIP Embeddings API [ 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790 ]

Slide 56

Slide 56 text

ANY MODEL Embeddings API [ 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790 ]

Slide 57

Slide 57 text

[ 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790 ]

Slide 58

Slide 58 text

Search?

Slide 59

Slide 59 text

➊ Encode all content to vectors

Slide 60

Slide 60 text

ANY MODEL Embeddings API [ 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790 ]

Slide 61

Slide 61 text

➋ Store in Vector DB

Slide 62

Slide 62 text

[ 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790 ]

Slide 63

Slide 63 text

➌ Encode query as Vector, too

Slide 64

Slide 64 text

ANY MODEL Embeddings API [ 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790, 0.874, 0.332, 0.687, 0.042, 0.955, 0.725, 0.117, 0.388, 0.574, 0.837, 0.238, 0.976, 0.409, 0.693, 0.853, 0.183, 0.509, 0.789, 0.612, 0.949, 0.125, 0.546, 0.368, 0.707, 0.831, 0.271, 0.930, 0.654, 0.432, 0.769, 0.214, 0.613, 0.790, 0.891, 0.428, 0.935, 0.752, 0.648, 0.373, 0.989, 0.513, 0.227, 0.651, 0.899, 0.310, 0.971, 0.672, 0.447, 0.108, 0.790 ]

Slide 65

Slide 65 text

➍ Search by distance

Slide 66

Slide 66 text

No content

Slide 67

Slide 67 text

Embeddings, SaaS, API

Slide 68

Slide 68 text

Vector DB, SaaS, API

Slide 69

Slide 69 text

➊,➋ Encode all content to vectors, Store in Vector DB

Slide 70

Slide 70 text

No content

Slide 71

Slide 71 text

➌,➍ Encode query as Vector, Search (by distance)

Slide 72

Slide 72 text

No content

Slide 73

Slide 73 text

Easy!

Slide 74

Slide 74 text

"Explainability" PROBLEM

Slide 75

Slide 75 text

(like ElasticSearch) + Filters

Slide 76

Slide 76 text

Filters location = "Berlin"

Slide 77

Slide 77 text

Token limit, context, vector space Content Partitioning

Slide 78

Slide 78 text

In distributional semantics, a quantitative methodological approach to understanding meaning in observed language, word embeddings or semantic vector space models have been used as a knowledge representation for some time.[11] Such models aim to quantify and categorize semantic similarities between linguistic items based on their distributional properties in large samples of language data. The underlying idea that "a word is characterized by the company it keeps" was proposed in a 1957 article by John Rupert Firth,[12] but also has roots in the contemporaneous work on search systems[13] and in cognitive psychology.[14] The notion of a semantic space with lexical items (words or multi-word terms) represented as vectors or embeddings is based on the computational challenges of capturing distributional characteristics and using them for practical application to measure similarity between words, phrases, or entire documents. The first generation of semantic space models is the vector space model for information retrieval.[15][16][17] Such vector space models for words and their distributional data implemented in their simplest form results in a very sparse vector space of high dimensionality (cf. curse of dimensionality). Reducing the number of dimensions using linear algebraic methods such as singular value decomposition then led to the introduction of latent semantic analysis in the late 1980s and the random indexing approach for collecting word cooccurrence contexts.[18][19][20][21] In 2000, Bengio et al. provided in a series of papers titled "Neural probabilistic language models" to reduce the high dimensionality of word representations in contexts by "learning a distributed representation for words".[22][23] A study published in NeurIPS (NIPS) 2002 introduced the use of both word and document embeddings applying the method of kernel CCA to bilingual (and multi-lingual) corpora, also providing an early example of self-supervised learning of word embeddings [24] Word embeddings come in two different styles, one in which words are expressed as vectors of co-occurring words, and another in which words are expressed as vectors of linguistic contexts in which the words occur; these different styles are studied in Lavelli et al., 2004.[25] Roweis and Saul published in Science how to use "locally linear embedding" (LLE) to discover representations of high dimensional data structures.[26] Most new word embedding techniques after about 2005 rely on a neural network architecture instead of more probabilistic and algebraic models, after foundational work done by Yoshua Bengio and colleagues.[27][28]

Slide 79

Slide 79 text

... via prompting Question Answering

Slide 80

Slide 80 text

In distributional semantics, a quantitative methodological approach to understanding meaning in observed language, word embeddings or semantic vector space models have been used as a knowledge representation for some time.[11] Such models aim to quantify and categorize semantic similarities between linguistic items based on their distributional properties in large samples of language data. The underlying idea that "a word is characterized by the company it keeps" was proposed in a 1957 article by John Rupert Firth,[12] but also has roots in the contemporaneous work on search systems[13] and in cognitive psychology.[14] The notion of a semantic space with lexical items (words or multi-word terms) represented as vectors or embeddings is based on the computational challenges of capturing distributional characteristics and using them for practical application to measure similarity between words, phrases, or entire documents. The first generation of semantic space models is the vector space model for information retrieval.[15][16][17] Such vector space models for words and their distributional data implemented in their simplest form results in a very sparse vector space of high dimensionality (cf. curse of dimensionality). Reducing the number of dimensions using linear algebraic methods such as singular value decomposition then led to the introduction of latent semantic analysis in the late 1980s and the random indexing approach for collecting word cooccurrence contexts.[18][19][20][21] In 2000, Bengio et al. provided in a series of papers titled "Neural probabilistic language models" to reduce the high dimensionality of word representations in contexts by "learning a distributed representation for words".[22][23] A study published in NeurIPS (NIPS) 2002 introduced the use of both word and document embeddings applying the method of kernel CCA to bilingual (and multi-lingual) corpora, also providing an early example of self-supervised learning of word embeddings [24] Word embeddings come in two different styles, one in which words are expressed as vectors of co-occurring words, and another in which words are expressed as vectors of linguistic contexts in which the words occur; these different styles are studied in Lavelli et al., 2004.[25] Roweis and Saul published in Science how to use "locally linear embedding" (LLE) to discover representations of high dimensional data structures.[26] Most new word embedding techniques after about 2005 rely on a neural network architecture instead of more probabilistic and algebraic models, after foundational work done by Yoshua Bengio and colleagues.[27][28] Why are Vector DBs great for searching?

Slide 81

Slide 81 text

Answer the question as truthfully as possible using the provided text, and if the answer is not contained within the text below, say "I don't know". ------------------------- $context ------------------------- Question: $question

Slide 82

Slide 82 text

No content

Slide 83

Slide 83 text

No content

Slide 84

Slide 84 text

No content

Slide 85

Slide 85 text

& slow $ $ $

Slide 86

Slide 86 text

Demo

Slide 87

Slide 87 text

Image source: http://www.flickr.com/photos/rietje/76566707/ CC BY 2.0

Slide 88

Slide 88 text

Thanks! Questions? Christoph Lühr [email protected] [email protected] @chluehr Slides license Attribution-NonCommercial-ShareAlike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/