Slide 1

Slide 1 text

£Ä ä& 3‚ÿÁ†A^ ê [Ü >f&E†>íó§Æ gÄzX 2013/03/09 ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 1 / 50

Slide 2

Slide 2 text

Jj 1 µ0 £Ä ä Ï&ŸþÿÁ 2 & G æ † O ÂDÂÿÁ Ä æ † O 3 ó´ŸþÿÁ†ï ó´ŸþÿÁ 3‚ÿÁ†ï ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 2 / 50

Slide 3

Slide 3 text

Jj 1 µ0 £Ä ä Ï&ŸþÿÁ 2 & G æ † O ÂDÂÿÁ Ä æ † O 3 ó´ŸþÿÁ†ï ó´ŸþÿÁ 3‚ÿÁ†ï ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 3 / 50

Slide 4

Slide 4 text

£Ä ä  äuÐׄ§A 3¤k/œU0XÚ¥ÑU é § A ^§'XœU[Ø!œU¢‰!œUš !œU¢½!œ¦/¥"  ä’ÖI¦¥±YO\ª³§ÓžE¤Ã‚ªÌ] LÝ P@"cÙéu£Ä ä ó§Ù I)û ¯K´µXÛ3 y 䌂5 Ä:þ§¦þJpÙDÑ5U9ªÌ|^ Ǻ ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 4 / 50

Slide 5

Slide 5 text

Jj 1 µ0 £Ä ä Ï&ŸþÿÁ 2 & G æ † O ÂDÂÿÁ Ä æ † O 3 ó´ŸþÿÁ†ï ó´ŸþÿÁ 3‚ÿÁ†ï ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 5 / 50

Slide 6

Slide 6 text

Ï&ŸþÿÁ & G †ó´ŸþQ´ïþ ä5U -‡•I§Óž3 äû üL§¥už-‡Š^[1]§Ïd'…¯K´XÛO(p /é& G †ó´Ÿþ?1¢žÿþ§l ¢yŒ‚5†DÑ5U k ²ï" [1] Ian F. Akyildiz et al. “NeXt generation/dynamic spectrum access/cognitive Radio Wireless Networks: A Survey”. In: COMPUTER NETWORKS JOURNAL (ELSEVIER) 50 (2006), pp. 2127–2159. ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 6 / 50

Slide 7

Slide 7 text

Ï&ŸþÿÁ-p„£Ä ä p„c´ ć¯K´ yS 5§Ì‡dGSM-R ä5¢y¶ éGSM-R äcٴ •?1¢žÿÁ[2]§± yS $1" GSM基础设施 eMLPP VGCS VBS 功能寻址 位置有关 寻址 接入 矩阵 功能号 表示 调度通信 自动列车控制(CTCS) 远程控制 铁路紧急救援移动服务 平面调车 轨道维护移动服务 高速数字通信 尾部风压检测 区间移动通信 旅客列车综合移动信息服务 GSM应用 ASCI业务 铁路业务 铁路应用 (a) ’Ö . GPRS BSS SSS OSS 电路域数据 应用系统 PCU BSC SGSN GGSN GPRS接口服务器 铁路信息系统 其他信息网络 BTS TRAU BTS BTS MSC/VLR EIR GCR GMSC/VLR 铁路固定电话网 公共电话网 HLR OMC 智能网业务平台 FAS FAS 调度台 车站台 BSS:基站子系统 OSS:操作维护子系统 SSS:网络交换子系统 GPRS:通用分组无线业务子系统 Um Abis A PRI AUC (b) äe ã 1: GSM-R ä’Ö .† äe [2] G. Baldini et al. “An early warning system for detecting GSM-R wireless interference in the high-speed railway infrastructure”. In: International Journal of Critical Infrastructure Protection (2010). ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 7 / 50

Slide 8

Slide 8 text

Ï&ŸþÿÁ-Âە ä 802.11n äæ^MIMO-OFDM9Ùƒ'Eâ[3]§l k /J, ä DÑ5U§ y•p óéþ†CX‰Œ" PHY MIMOµæ^õU‚9˜mE^Eâ§J,PHYóéþ9CX‰ Œ§ÓžJpXÚ-½5¶ HT20/HT40µæ^(¹& Eâ§•Ð/)û1Å f!Ûõ/ ³ªà ¯K" MAC A-MPDUµvàÜEâ=õ‡v ^˜‡MACÞܧӞü $ACKuxªÇ§ü$ux/ Âm•§JpDÑ Ç¶ SGIµ400ns om…§ü$žmm•§JpMACóéþ" [3] E. Perahia et al. “Next Generation Wireless LANs: throughput, robustness and reliability in 802.11n”. In: Recherche 67 (2008), p. 02. ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 8 / 50

Slide 9

Slide 9 text

Ï&ŸþÿÁ-ž˜A5 £ÄÂ ä žC5† ˜ É5 1 Â&Òr݆DѤõÇÉÂD‚¸K•§Xã 2a ¤«¶ 2 Â&ÒrÝäk ˜ É5§Xã 2b ¤«¶ 3 DѤõÇ3ØÓžmºÝSu)Cz§Xã 2c ¤«" -100 -80 -60 -40 -20 0 0 20 40 60 80 100 RSS(dBm) LOS NLOS -85 -80 -75 0 20 40 60 80 100 0 20 40 60 80 100 PDR(%) Time(s) (a) 0 0.2 0.4 0.6 0.8 1 -90 -60 -30 0 CDF RSS(dBm) T2, r4 T2, r5 T2, r6 (b) 20 40 60 80 100 0 1 2 3 PDR(%) Time(s) static Δt=10ms Δt=50ms Δt=100ms (c) ã 2: Â&Òr݆DѤõÇ žC59 ˜ É5 ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 9 / 50

Slide 10

Slide 10 text

Ï&ŸþÿÁ-Ø©( ©Ì‡ é£ÄÂ ä žm†˜mA5§©OJÑ& G †ó ´Ÿþ Ä ÿÁŽ{§±ü$ÿÁm•¿JpÿÁ°Ý§? k J , ä DÑ5U" & G æ † O 1 Šâp„£Ä äÂD‚¸ A:§Šâ c äG ?1Ä æ §Óž ¤Páëê O†æ ªÇO޶ 2 3 yÿÁ°Ý cJeü$ÿÁm•§3p„£Ä^‡eü$& æ éêâDÑ Ø|K•" ó´ŸþÿÁ†ï 1 ÏLÄ wIJþŽ{éDѤõÇ?1¢žÿþ§Šâ äG ¢yó´ŸþÿÁ°Ý†m• k ²ï¶ 2 O¿¢yó´Ÿþ3‚ï µe§Óž|^Ôn †ó´ •I ¢y£ÄMIMO-OFDM ä „Ç· " ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 10 / 50

Slide 11

Slide 11 text

Jj 1 µ0 £Ä ä Ï&ŸþÿÁ 2 & G æ † O ÂDÂÿÁ Ä æ † O 3 ó´ŸþÿÁ†ï ó´ŸþÿÁ 3‚ÿÁ†ï ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 11 / 50

Slide 12

Slide 12 text

ÂDÂÿÁ-ykóŠ ÿÁL§ £Ä ä ÂDÂÿþL§Xã 3 ¤«§Ì‡©• /þŠ O!à ‚DÂýÿ9 .? " Local Power Estimation Received Signal AMP Propagation Prediction Model Correction ) (x P r ) (x S ) (x M 2 1 , K K ã 3: £Ä äÂDÂÿþL§ duGSM-R äéS 5äk¦§ykÿÁ•{þæ^pªæ §¤ p…=·^ul‚ÿÁ§Ã{A^u3‚ÿÁ9] NÝ" ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 12 / 50

Slide 13

Slide 13 text

ÂDÂÿÁ-ykóŠ DÚ•{ Lee¼æ Ž{•kJÑ£Ä ä Â&ÒrÝ /þŠ O¯K§Äua|Pá©Û ÚO«m†æ :ê 'X¶[4] Ù¦Äu˜&«m½•Œq, O •{§Ó 3a|Pá& e?1©Û¶[5] DÚÄu4dPá& æ Ž{ÿÁm• p§Ã{† A^uGSM-R ä¶[6] Ï^Lee¼æ Ž{ØI‡Pá& ©Ù¼ê§ •`æ ëêI‡ÏLŒþêâ©Û §Ó äk p ÿÁm•§•·^ul‚ÿÁ"[7] ÿÁm•µF=900MHz§V=300km/h¶T=480ms§Measure/Data=1/25 Lee¼æ Ž{ ÚO«m•14.4m½172ms§I‡2.8 ÿþžY§óéþü$7.2%¶ ó§A^¥ÚO«m˜„À •1.6m½19.2ms§I‡25 ÿþžY§óéþü$96%" [4] W.C.Y. Lee. “Estimate of local average power of a mobile radio signal”. In: IEEE Trans. on Vehicular Technology (1985), pp. 22–27. [5] Bo Ai et al. “Theoretical analysis on local mean signal power for wireless field strength coverage”. In: WCSP ’2009. [6] C. Tepedelenlio˘ glu et al. “Estimation of Doppler spread and signal strength in mobile communications with appli- cations to handoff and adaptive transmission”. In: Wireless Commun. and Mobile Computing (2001), pp. 221–242. [7] D. de la Vega et al. “Generalization of the Lee Method for the Analysis of the Signal Variability”. In: IEEE Trans. on Vehicular Technology 58.2 (2009), pp. 506 –516. ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 13 / 50

Slide 14

Slide 14 text

Jj 1 µ0 £Ä ä Ï&ŸþÿÁ 2 & G æ † O ÂDÂÿÁ Ä æ † O 3 ó´ŸþÿÁ†ï ó´ŸþÿÁ 3‚ÿÁ†ï ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 14 / 50

Slide 15

Slide 15 text

Ä æ † O-Ž{ O ÿÁL§ 4dPá& Â&ÒrÝÄ ÿÁL§Xã 4 ¤«§Ì‡ÏLëê O(½ÚO«m•ÝÚæ :ê8" 1 ŠâÂD‚¸¢žN æ ëê§·A äG Cz¶ 2 3 yÿÁ°Ý cJeü$æ ªÇ§l ~ ÿÁm•" Signal Strength Dynamic Sampling Signal Strength Dynamic Sampling A. Fading Parameters Dynamic Estimating A. Fading Parameters Dynamic Estimating B. Statistical Intervals B. Statistical Intervals Geographic Information System Geographic Information System Mobile Station's Speed and Direction Mobile Station's Speed and Direction Received Signal C. Sampling Numbers ) , , , ( } , {         i z N EM ) , ( /    d f d    r p i z ) , ( / 2 2    L f L  ) ( N f N  ã 4: 4dPá& Ä ÿÁL§ ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 15 / 50

Slide 16

Slide 16 text

Ä æ † O-Ž{ O 1!ÚO«m•Ý Pe = 10 log10 ˆ s + σˆ s ˆ s − σˆ s = 10 log10       2σ2+ν2 2σ2 n + 2(1 + n) n 0 g ν2 2σ2 ; ρ dρ 2σ2+ν2 2σ2 n − 2(1 + n) n 0 g ν2 2σ2 ; ρ dρ       (1) 2!æ :ê8 Qe = 10 log10 ¯ r2 + σ ¯ r2 ¯ r2 = 10 log10   σ2 N 2N + ν2 + 2σ2 N N + ν2 σ2 N (2N + ν2)   = 10 log10 2N + ν2 + 2 N + ν2 2N + ν2 (2) ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 16 / 50

Slide 17

Slide 17 text

Ä æ † O-Ž{ O Ν=0 (Rayleigh) Ν=10 Ν=8 Ν=6 Ν=4 Ν=2 0 20 40 60 80 100 0.0 0.5 1.0 1.5 2.0 2L Λ P_e dB Pe (dB) 2L/Ȝ (a) σ = 1 Ν=0 (Rayleigh) Ν=2 Ν=4 Ν=6 Ν=8 Ν=10 0 20 40 60 80 100 0.5 1.0 1.5 2.0 2L Λ P_e dB Pe (dB) 2L/Ȝ (b) σ = 3 Ν=0 (Rayleigh) Ν=2 Ν=10 Ν=8 Ν=6 Ν=4 0 20 40 60 80 100 0.5 1.0 1.5 2.0 2.5 2L Λ P_e dB Pe (dB) 2L/Ȝ (c) σ = 5 Ν=0 (Rayleigh) Ν=10 Ν=8 Ν=6 Ν=4 Ν=2 0 20 40 60 80 100 0.5 1.0 1.5 2.0 2.5 2L Λ P_e dB Pe (dB) 2L/Ȝ (d) σ = 7 ã 5: ÚO«m•Ý8˜zØ ÚO«m•Ý Pe = 1dB ⇓ 2L = f2L(λ; ν, σ) (Ø1 ÚO«m•Ý8˜z Ø Pe †ν2/σ2¥é ê‚5'X" ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 17 / 50

Slide 18

Slide 18 text

Ä æ † O-Ž{ O Ν=0 (Rayleigh) Ν=10 Ν=8 Ν=6 Ν=4 Ν=2 0 20 40 60 80 100 0.4 0.6 0.8 1.0 1.2 N Q_e dB N Qe (dB) ã 6: æ :ê88˜zØ æ :ê8 Qe = 1dB ⇓ N = fN(λ; ν, σ) (Ø2 æ :ê88˜zØ Qe †ν2¥éê‚5 'X§†σ2ÚλÃ'" æ ªÇµ∆d = 2L/N = f2L (λ; ν, σ)/fN (λ; ν, σ) = fd (λ; ν, σ) ∆d ⇐ ÚO«m•Ý2LÚæ :ê8N¶ ∆d ⇒ ÿþ°Ý†m•" ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 18 / 50

Slide 19

Slide 19 text

Ä æ † O-5Uµ ÿÁ² M‡² µ¥%?nìCPUµCME137686LX-W¶GSM-RÂÏ& ¬µCOM16155RER ^‡² µmu‚¸µVisual Studio 2010¶muŠóµC#¶$1² µMicrosoft .NET Compact Framework¶$1XÚµWindows XP/CE/Mobile (a) M‡² (b) ^‡² ã 7: GSM-R 䘥 •ÿÁXÚ ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 19 / 50

Slide 20

Slide 20 text

Ä æ † O-5Uµ Ž{ O†XÚ¢y 3‚ÿÁŽ{̇•)4dPáëê O†æ ëêOާ©•PáÏfν0 Úσ0 Щz †¢ž•#§Óž(½e˜Óæ ëê2LÚN"• ÏLÚO«m•ÝÚæ :êOŽ æ m…∆d = 2L/N§¿m©#˜Ó &Òæ †ëê O" ÿÁXÚé ä?1¢žiÿ§3 枉Ñý´&E¶‰Ñ ä nÜ5Uµ §¿JÑ ëêN ïÆ¶•¹Ôn !ó´ †’Ö •I§¢yé ä ¡ÿÁ" Hardware Algorithm Software RSS Current cell Neighbor cell TCH Data Voice Predict and Warning Raw RSS and Traffic GSM-R Networks Δd, Δt 2L, N ν, σ vtrain EM update (a) Ž{ O GSM-R Networks Um Abis A MS------BTS------BSC------MSC------OMC------ 无线传播测试 模型修正 传播预测 参数估计 空中接口 物理层 LAPDm层 无线资源管理 移动性管理 呼叫管理 CC SS SMS 无线信道 适配层 服务层 AT 命令 AT 命令 链路质量测试 网络层 设备层 链路层 语音业务 数据业务 列控业务 硬件&软件 平台 测试算法 空 中 接 口 测 试 系 统 (b) XÚ¢y ã 8: Ž{ O†XÚ¢y ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 20 / 50

Slide 21

Slide 21 text

Ä æ † O-5Uµ XÚõU GSM-R 䘥 •ÿÁXÚ̇ ¤ äÏ&Ÿþ ÿÁ!?n! ýÿ!w«†ý´" 数据采集 参数统计 性能分析 数 据 库 预测 模型 网络性能 评估报告 实时显示 事件报告 预警信息 网络参数 调整建议 存储 读取 修正 读取 (a) 当 前 小 区 信 息 当 前 小 区 信 息 邻 居 小 区 信 息 邻 居 小 区 信 息 业 务 信 道 信 息 业 务 信 道 信 息 GSM-R网络通信质量 GSM-R网络空中接口测试系统 参 数 统 计 性 能 分 析 数据采集 数 据 库 网 络 指 标 预测 模型 数 据 库 其 他 用户终端 操 作 维 护 实 时 显 示 事 件 报 告 预 警 信 息 评 估 报 告 参 数 调 整 (b) ã 9: êâ?n†Ä õU ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 21 / 50

Slide 22

Slide 22 text

Ä æ † O-5Uµ ÿÁ(J 3ƒÓ ÿÁ°Ýe§=8˜zØ ©O•1dB§Ä Ž{ ÿÁm• wÍü$§l k y ä ~Ï&" 4dÏfK = 0ž§ÚO«m2L = 55λ§æ m…•3.7λ§ Lee¼Ž{•1.1λ¶ ‘X4dÏfK OŒ§ÚO«m†æ m…Åìü$¶ ν ≥ 8ž§æ :êN ≤ 10BŒ± y /þŠ O(5§æ m…Œu1m" L 1: ÿÁ(J Terrain K(dB) ν σ 2L(λ) N ∆d(λ) ∆d(m) vtrain(km/h) 200 250 300 ∆t(ms) NLOS* 0 - - 40 36 1.1 0.367 2.20 1.76 1.47 Intensive 0 0 1 55 15 3.7 1.222 7.33 5.86 4.89 2 4 2 18 12 1.5 0.500 3.00 2.40 2.00 4 5.6 2 9 9 1.0 0.333 2.00 1.60 1.33 6 6 3 20 7 2.9 0.967 5.80 4.64 3.87 8 12 3 8 1 8.0 2.667 16.00 12.80 10.67 Open 10 18 4 12 1 12.0 4.000 24.00 19.20 16.00 * Caculated by Lee’s method in the case of Rayleigh fading ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 22 / 50

Slide 23

Slide 23 text

Ä æ † O-5Uµ ÓžŒºÝÚ ºÝPáU k ©l§•þ A^JøG &Eµ 1 ŒºÝPáµÏLML½MMSE O?1DÂýÿ[8]¶ 2 ºÝPᵃ†Ž{ ƒ†€•ÀJ[9]" -100 -90 -80 -70 -60 -50 -40 0 50 100 150 200 250 300 350 400 450 500 Signal strength (dBm) Distance along the route (m) ν=18, σ=4 2L=12, N=1 Δd=4, Δt=19 ν=4, σ=2 2L=18, N=12 Δd=0.5, Δt=2.5 received long-term (a) Signal Strength -30 -25 -20 -15 -10 -5 0 5 10 15 20 0 50 100 150 200 250 300 350 400 450 500 Short-term fading (dB) Distance along the route (m) (b) Short-term Fading ã 10: ÿÁ(J [8] L. Gopal et al. “Power Estimation in Mobile Communication Systems”. In: Comp. and Info. Science (2009), P88. [9] K.I. Itoh et al. “Performance of handoff algorithm based on distance and RSSI measurements”. In: IEEE Trans. on Vehicular Technology (2002), pp. 1460–1468. ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 23 / 50

Slide 24

Slide 24 text

Jj 1 µ0 £Ä ä Ï&ŸþÿÁ 2 & G æ † O ÂDÂÿÁ Ä æ † O 3 ó´ŸþÿÁ†ï ó´ŸþÿÁ 3‚ÿÁ†ï ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 24 / 50

Slide 25

Slide 25 text

ó´ŸþÿÁ-ykóŠ DÚ•{ DÚ•{½ÄuÌÄ&ÿ§½Äu ½PDR-RSS .§Xã 11 ¤«" 1 £Ä äD‚¸† äG E,õC§ü$ó´ŸþÿÁ°Ý¶ 2 802.11næ^õ«Ôn Úó´ ˜§O\ó´ŸþÿÁm•¶ 3 MIMO-OFDM õ ˜A5O\ PDR-RSSï E,5" £Ä802.11n ä £Ä5Úõ ˜5ü$ ó´Ÿþ ÿÁ†ýÿ° ݧ?˜ÚK• ä N5U" PDR-RSS Model PDR RSS Model Measure Rate Adaption TX RX Probe Predict Database Channel Access Power Control Routing PHY/MAC Settings Application ã 11: · PDR-RSSµe ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 25 / 50

Slide 26

Slide 26 text

ó´ŸþÿÁ-ykóŠ ÿÁ•{EWMA: ˆ Pw [k] = α ˆ Pw [k − 1] + (1 − α)P[k] 1 \ ÏfαéÿÁ°ÝkéŒK•§nØþ˜„ ˜30.1 0.4ƒ m[10]"¢SXÚ˜„æ^ ½Š£0.125½0.25¤§¦ ÿÁ°( ÝN´É .‚¸† ä ˜Cz K•¶ 2 I••ÝWÓ K•ÿÁ°Ý§· ä¥I••ݘ„• ½Š £100ms½50ms¤§ ä$13pDфǞ§EWMA¬¢¦ KPDR ]žeü§? ü$ ä5U" 0 1 xi Last Window W; P[k-1] Current Window W; P[k] [10] NIST/SEMATECH. e-Handbook of Statistical Methods. 2012. URL: www.itl.nist.gov/div898/handbook . ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 26 / 50

Slide 27

Slide 27 text

ó´ŸþÿÁ-ykóŠ 0 20 40 60 80 100 -90 -80 -70 -60 -50 -40 PDR(%) RSS(dBm) δ- δ+ HT20/LGI MCS 8 MCS 10 MCS 12 MCS 14 (a) PDR-RSS . 0 0 0 0 -90 -80 -70 -60 -50 -40 -30 -20 HT/GI/MCS RSS(dBm) HT20/LGI HT20/SGI HT40/LGI HT40/SGI 15 15 15 15 [δ- ,δ+ ] MCS (b) PDR-RSSLÞI• ã 12: PDR-RSS .LÞI• Xã 12 ¤«§3¤k ÀJ HT/GI/MCS ˜¥§34%á\LÞI• ¥§8%¦ PDR<10%§ù«œ¹3£Ä802.11n 䥕•²w" ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 27 / 50

Slide 28

Slide 28 text

Jj 1 µ0 £Ä ä Ï&ŸþÿÁ 2 & G æ † O ÂDÂÿÁ Ä æ † O 3 ó´ŸþÿÁ†ï ó´ŸþÿÁ 3‚ÿÁ†ï ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 28 / 50

Slide 29

Slide 29 text

3‚ÿÁ†ï -Ž{ O ó´Ÿþ3‚ÿÁ†ï 1 éó´Ÿþ ž˜A59 ˜õ 5§æ^Ä wÄI•²þJpÿÁ°Ý¶ 2 æ^3‚ï µe§O(•x c ˜e äG §•þ A^JøŒ‚&E¶ 3 (ÜÄ ÿÁ†3‚ï §Jp„Ç· džO(5§? J, ä5U" Database PDR-RSS Model PDR RSS HT-GI-MCS Index Model Application Measure GradedM GradedR DSWA HT-GI-MCS Channel Access Power Control Routing Rate Adaption TX RX Update PHY/MAC Settings DSWA → GradedM → GradedR 1 •I© ÿÁµDSWA Ôn µRSS/SNR/SINR/CSI ó´ µDѤõÇ(PDR) 2 3‚¢ÿ .µGradedM Ôn µMIMO§HT20/HT40 ó´ µLGI/SGI 3 þ ] © µGradedR APsµ& \!ªÌ+n STAsµ„Ç››!´dÀJ ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 29 / 50

Slide 30

Slide 30 text

3‚ÿÁ†ï -Ž{ O ÿÁ .µ2ÂËã|‘ÅL§ uxêâ• ÂG •xi = {0, 1}§ ¤õVÇpi dSINR .•x" pi = Prob[SINRi(t) > δ] = Prob[ Ri(t) Ii(t) + n > δ] = ˆ p (Ri(t)) (3) ÿÁ•{DSWA: ˆ Ps [k] = βP [k] + (1 − β)P[k] £Ä802.11n ä¥ PDRÿþ§Q‡·A‚¸CzE¤ äG ] žÅħq‡÷võ« ˜ÀJ ‡¦" 1 ÏLwÄÏfβÀ þ˜gOŽ¥‚C cž• Ü©êâ§l ü$PDR ]žCzéÿÁ(J K•¶ 2 I••ÝW•¯‡°Ä…† ä ˜Ã'§ ´Šâ c äG Cz§éÿÁ°Ý†m•?1²ï" ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 30 / 50

Slide 31

Slide 31 text

3‚ÿÁ†ï -Ž{ O ÿÁ•{DSWA: ˆ Ps [k] = βP [k] + (1 − β)P[k] 0 1 xi Last Window W(k-1,n) ; P[k-1] Current Window (1-β(k,n) )W(k,n) ; P[k] xi = 0 xi = 1 β(k,n) W(k,n) ; P'[k] Sliding Window W(k,n) = n i=1 ωi γi ηi n i=1 ωi (4) β(k,n) = 1 + n i=1 ωi γi n i=1 ωi (5) Ù¥γi •PDRCzÏfµ γi = 1+P[k −n+i]−P[k −n+i −1], 1 ≤ i ≤ n, ωi •\ Ïfµ ωi = 1 2 n−i 2 , 1 ≤ i ≤ n ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 31 / 50

Slide 32

Slide 32 text

3‚ÿÁ†ï -Ž{ O 3‚ï 1 & ‘°µHT40•N´É‚¸CzK•§ƒÓœ¹e €••p§LÞI••Ý••¶ 2 Dфǵ €•‘XDÑ„Ç Jp OŒ§ MCSpu14žI••ÝŒu10dB¶ 3 om…µ$„ÇÄ Ã«O§MCSpu14žSGI²wJ,PDR§cÙéuHT40& " 0 10 20 30 40 50 60 70 80 90 100 -90 -80 -70 -60 -50 -40 -30 -20 PDR(%) RSS(dBm) HT20/SGI MCS 8 MCS 10 MCS 12 MCS 14 0 10 20 30 40 50 60 70 80 90 100 -90 -80 -70 -60 -50 -40 -30 -20 -10 RSS(dBm) HT40/SGI MCS 8 MCS 10 MCS 12 MCS 14 (a) MCS 8-14, GI = 400ns 0 10 20 30 40 50 60 70 80 90 100 -90 -80 -70 -60 -50 -40 -30 -20 PDR(%) RSS(dBm) HT20/LGI MCS 8 MCS 10 MCS 12 MCS 14 0 10 20 30 40 50 60 70 80 90 100 -90 -80 -70 -60 -50 -40 -30 -20 -10 RSS(dBm) HT40/LGI MCS 8 MCS 10 MCS 12 MCS 14 (b) MCS 8-14, GI = 800ns 0 10 20 30 40 50 60 70 80 90 100 -90 -80 -70 -60 -50 -40 -30 -20 PDR(%) RSS(dBm) HT20/MCS15 SGI LGI 0 10 20 30 40 50 60 70 80 90 100 -90 -80 -70 -60 -50 -40 -30 -20 -10 RSS(dBm) HT40/MCS15 SGI LGI (c) MCS 15, GI = 400/800ns ã 13: PDR-RSS . ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 32 / 50

Slide 33

Slide 33 text

3‚ÿÁ†ï -Ž{ O 3‚ï Ž{ Ž Ž Ž{ { { 1 GradedMµPDR-RSS3‚ï †¢ž•# Ñ Ñ Ñ\ \ \µ µ µ pdr-now, rss-now Ñ Ñ ÑÑ Ñ Ñµ µ µ ht-gi-mcs-index 1: struct GradedT { 2: graded-delta[r][2]; // r=8/16/24 éAuU‚êþ1/2/3 3: } graded-table[w][g]; // w=g=2 éAu& HT20/HT40† om…LGI/SGI 4: // 1. PDR-RSS . . .¢ ¢ ¢ž ž ž• • •# # # 5: if graded-delta-changed then 6: graded-table ← update-delta(pdr-now,rss-now); 7: end if 8: // 2. HT/GIÀ À ÀJ J JS S S ü ü üS S S 9: mcs-index ← sort(graded-table,rss-now); 10: // 3. HT/GI/MCSÀ À ÀJ J JS S S ü ü üS S S 11: ht-gi-mcs-index ← sort(mcs-index,mcs-rate); 12: return ht-gi-mcs-index; ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 33 / 50

Slide 34

Slide 34 text

3‚ÿÁ†ï -Ž{ O 3‚ï 1. Щz¼ ©PDR-RSS .§¿;•uGradedT¥§ ëêu) Czž?13‚•#§éGradedT?1üS¼ HT/GI/MCS¢Ú" 0 0 0 0 -90 -80 -70 -60 -50 -40 -30 -20 HT/GI/MCS RSS(dBm) HT20/LGI HT20/SGI HT40/LGI HT40/SGI 15 15 15 15 ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 34 / 50

Slide 35

Slide 35 text

3‚ÿÁ†ï -Ž{ O 3‚ï 2. T¢Ú‡A ¤k ˜3 cG eŒ¼ DÑ5U†Œ‚5§Œ ±Š•PHY/MAC ˜ëêJø‰þ A^" 0 0 0 0 -90 -80 -70 -60 -50 -40 -30 -20 HT/GI/MCS RSS(dBm) HT20/LGI HT20/SGI HT40/LGI HT40/SGI 15 15 15 15 ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 35 / 50

Slide 36

Slide 36 text

3‚ÿÁ†ï -Ž{ O 3‚ï 2. T¢Ú‡A ¤k ˜3 cG eŒ¼ DÑ5U†Œ‚5§Œ ±Š•PHY/MAC ˜ëêJø‰þ A^"                              ǻRSS=-3dB, R=78Mbps ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 36 / 50

Slide 37

Slide 37 text

3‚ÿÁ†ï -Ž{ O 3‚PDR-RSSï Ž{ 3. c ˜ePDR<90%½RSS< δ+ §½öPDRÚRSS±Y-½§ Ã{÷v„ÇI¦§Šâht-gi-mcs-table-#ÀJÜ· ˜"                              ǻRSS=6.5dB, R=52Mbps ǻRSS=6dB, R=43.3Mbps ǻRSS=5dB, R=108Mbps ǻRSS=4dB, R=90Mbps ǻRSS=-3dB, R=78Mbps ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 37 / 50

Slide 38

Slide 38 text

3‚ÿÁ†ï -Ž{ O 3‚ï 3. c ˜ePDR<90%½RSS< δ+ §½öPDRÚRSS±Y-½§ Ã{÷v„ÇI¦§Šâht-gi-mcs-table-#ÀJÜ· ˜"                              ǻRSS=5dB, R=108Mbps ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 38 / 50

Slide 39

Slide 39 text

3‚ÿÁ†ï -5Uµ ¢ ÿÁ ÏLLinuxöŠXÚ±9ath9km ° Ä¢yÂÏ&§é'Ž{•)µ 1 Minstrel-EWMA 2 Minstrel-DSWA 3 GradedR µ •I•)µ 1 ÿÁŽ{°Ý9m• 2 DѤõÇ 3 óéþ Wireless device Linux kernel xmit.c rc.c recv.c tx rx ath9k nl80211 cfg80211 mac80211 ieee80211 P(.) Ra (.) Rc (.) D(.) G(.) D(.): DSWA G(.): Graded Model P(.): Packet Delivery Rc (.): Rate Control Ra (.): RSS Average W,β PDR RSS η,γ [δ- ,δ+ ] Network Layer Device Layer DSWA.c GradedM.c AP2 AP1 r2 AP r5 P1 P2 P3 P7 P8 P9 P10 P6 P5 P4 P11 r1 r3 10 ft 50 ft r4 r6 T1 T2 ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 39 / 50

Slide 40

Slide 40 text

3‚ÿÁ†ï -5Uµ 1!ÿÁŽ{°Ý9m•µ oN ÿÁØ •¡§DSWA²w$uEWMA¶ l\ȩټꌱwѧEWMAÿþŠ–•pu¢Sж DSWA I••Ý•‹ äG k'§†DÑ„ÇÃ'¶ DÑ„Çl6.5Mbps 300Mbps§EWMAŽ{ I••ÝlW = 20O\ W = 500§ W = 500žEWMA¬¢¦KPDR]žeü &E" 0 0.2 0.4 0.6 0.8 1 -1 -0.5 0 0.5 1 CDF Error DSWA EWMA (a) \ȩټê 100 200 300 400 0 10 20 30 40 50 W 0.5 0.6 0.7 0.8 0.9 1 0 10 20 30 40 50 β 0 20 40 60 80 100 0 10 20 30 40 50 PDR(%) Time(s) accurate measured (b) ²þI••Ý ã 14: DѤõÇÿÁØ ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 40 / 50

Slide 41

Slide 41 text

3‚ÿÁ†ï -5Uµ 2!DѤõǵ GradedRÿÁŽ{– 91% PDRpu90%§ Minstrel k63% PDR$u90%¶ ‘XMIMOŒ^U‚êþ O\§GradedRŒ‚5‘ƒþ,§Ù$ u90% PDR'~d9%ü•5%§ Minstrell37% þ,•51%" 0 50 100 150 0 20 40 60 80 100 Throughput(Mbps) Time(s) {5%,32%} {0%,9%} GradedR Minstrel (a) 1x3 0 50 100 150 200 250 0 20 40 60 80 100 Throughput(Mbps) Time(s) {8%,34%} {0%,8%} GradedR Minstrel (b) 2x3 0 50 100 150 200 250 300 0 20 40 60 80 100 Throughput(Mbps) Time(s) {0%,5%} {9%,42%} GradedR Minstrel (c) 3x3 ã 15: óéþ ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 41 / 50

Slide 42

Slide 42 text

3‚ÿÁ†ï -5Uµ 3!óéþµ éu1X3 MIMO ˜§GradedRŽ{•k3žm20¦ƒcóéþ puMinstrelŽ{5-15Mbps§Ù¦œ¹e óéþÄ ƒÓ¶ Ù¦ ˜e§32X3 ˜eGradedRŽ{puMinstrel5-20Mbps§ 33X3 ˜e$–ˆ 30Mbps 5UJ," 0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100 120 140 CDF (%) Throughput (Mbps) Minstrel GradedR (a) 1x3 0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100 120 140 160 180 200 220 CDF (%) Throughput (Mbps) Minstrel GradedR (b) 2x3 0 10 20 30 40 50 60 70 80 90 100 0 50 100 150 200 250 300 CDF (%) Throughput (Mbps) Minstrel GradedR (c) 3x3 ã 16: óéþ\ȩټê ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 42 / 50

Slide 43

Slide 43 text

3‚ÿÁ†ï -5Uµ 3!óéþµ GradedR31X3Ú3X3 ˜e©OJ,óéþ15MbpsÚ40Mbps¶ RSS$u-60dBmž§ØÓŽ{3üU‚ÚVU‚XÚ óéþÄ ƒÓ§GradedR33X3 ˜e•ŒóéþJ,•5Mbps¶ RSSpu-40dBmž§éu1X3MIMOXÚ§óéþJ,•8Mbps§ éu2X3Ú3X3MIMOXÚ§óéþJ,©O•25/30Mbps" 0 50 100 150 -80 -70 -60 -50 -40 -30 -20 Throughput(Mbps) Ave. RSS(dBm) Minstrel-EWMA Minstrel-DSWA GradedR (a) 1x3 0 50 100 150 200 250 -80 -70 -60 -50 -40 -30 -20 Throughput(Mbps) Ave. RSS(dBm) Minstrel-EWMA Minstrel-DSWA GradedR (b) 2x3 0 50 100 150 200 250 300 -80 -70 -60 -50 -40 -30 -20 Throughput(Mbps) Ave. RSS(dBm) Minstrel-EWMA Minstrel-DSWA GradedR (c) 3x3 ã 17: óéþ†²þ&ÒrÝ ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 43 / 50

Slide 44

Slide 44 text

Ø©o( © é£Ä ä Ï&ŸþÿÁ§JÑ& G †ó´Ÿþ Ä ÿÁŽ{§¿©O ¤ÿÁXÚ ^M‡² ‡ï§• ÏL¢ é ÿÁŽ{?1ÿÁ!é'†µ " 1 JÑp„£Ä ä& G Ä ÿÁŽ{§3p„£Ä‚¸e yÿÁ°Ý¿k ü$ÿÁm•¶ 2 ‡ïGSM-R 䘥 •iÿXÚ§¿gÌmu3‚ÿÁ^‡² §u®qp„c´?1¢ ÿÁ¶ 3 OÄ wIJþŽ{¢yDѤõÇ O(ÿþ§k ü$d äG žCA5¤E¤ Ø|K•¶ 4 O¿¢yó´Ÿþ3‚ï µe§Óž|^Ôn †ó´ •I ¢y£ÄMIMO-OFDM ä „Ç· ¶ 5 muÂە äÏ&ŸþÿÁ^‡§¿éÿÁŽ{9„Ç· Ž {?1 y!é'†µ " ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 44 / 50

Slide 45

Slide 45 text

£Ä ä& 3‚ÿÁ†A^ THANKS! ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 45 / 50

Slide 46

Slide 46 text

/þŠ O 1!D .µp2 r (x) = s(x)h(x) 1 ÒKPáµ s(x) ∼ N m(x), σ2 s (6) 2 õ»Páµ h(x) = 1 √ 1 + K lim M→∞ 1 √ M M m=1 amej(2π λ cos(θmx)+φm ) NLOS Components + K 1 + K ej( 2π λ cos(θ0x+φ0)) LOS Component (7) ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 46 / 50

Slide 47

Slide 47 text

/þŠ O 2!4d& O[11] νk+1 = 1 N N i=1 I1 νk zi σ2 k I0 νk zi σ2 k zi (8) σ2 k+1 = max 1 2N N i=1 z2 i − ν2 k 2 , 0 (9) Ù¥N•æ :ê8"ν†σ Ð©Š•µ ν0 =  2 1 N N i=1 z2 i 2 − 1 N N i=1 z4 i   1/4 (10) σ2 0 = 1 2 1 N N i=1 z2 i − ν0 (11) [11] T.L. Marzetta. “EM algorithm for estimating the parameters of a multivariate complex Rician density for polarimetric SAR”. In: International Conference on Acoustics, Speech, and Signal Processing, 1995. IEEE. 1995, pp. 3651–3654. ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 47 / 50

Slide 48

Slide 48 text

/þŠ O 3!ÚO«m•Ý /þŠÏLp2 r (x) È©²þ O µ ˆ s = 1 2L y+L y−L p2 r (x)dx = s 2L y+L y−L h(x)dx (12) σ2 ˆ s = 2(n − 1) n2(1 + K)2 n 0 g(K; ρ)dρ (13) ⇓ Pe = 10 log 10 ˆ s + σˆ s ˆ s − σˆ s = 10 log 10       2σ2+ν2 2σ2 n + 2(1 + n) n 0 g ν2 2σ2 ; ρ dρ 2σ2+ν2 2σ2 n − 2(1 + n) n 0 g ν2 2σ2 ; ρ dρ       (14) ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 48 / 50

Slide 49

Slide 49 text

/þŠ O 4!æ :ê8 Â&ÒõÇL«•r2 = 2σ2 + ν2 ≈ 1 N N i=1 z2 i £ª(8)Ú(9)¤§Kr2 OŠ9Ù• •µ ¯ r2 = E r2 = 1 N E N i=1 z2 i = σ2 N 2N + ν2 (15) σ¯ r2 = D r2 = 1 N2 D N i=1 z2 i = σ4 N2 4N + 4ν2 (16) ⇓ Qe = 10 log 10 ¯ r2 + σ ¯ r2 ¯ r2 = 10 log 10 σ2 N 2N + ν2 + 2σ2 N √ N + ν2 σ2 N (2N + ν2) = 10 log 10 2N + ν2 + 2 √ N + ν2 2N + ν2 (17) ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 49 / 50

Slide 50

Slide 50 text

ó´Ÿþï ó´ŸþÿÁØ 1! ½I•µ E[∆PDRf ] = E[ 1 W W i=1 xi − p] = 1 W W i=1 E[xi ] − p = 0 (18) D[∆PDRf ] = D[ 1 W W i=1 xi − p] = 1 W W i=1 D[xi ] = p(1 − p) (19) 2!\ I•µ E[∆PDRw ] = E[αPDRf + (1 − α)PDRf − p] = αp + (1 − α)p − p = 0 (20) D[∆PDRw ] = D[αPDRf + (1 − α)PDRf − p] = [α2 + (1 − α)2]p(1 − p) (21) 3!wÄI•µ E[∆PDRs[k + 1]] = E[βP [k] + (1 − β)P[k + 1] − pn] = βp [k] + (1 − β)p[k + 1] − pn (22) D[∆PDRs[k + 1]] = D[βP [k] + (1 − β)P[k + 1] − pn] = βq [k] + (1 − β)q[k + 1] W (23) ê [Ü (þ° ÏŒÆ) £Ä ä& 3‚ÿÁ†A^ 2013/03/09 50 / 50