Slide 1

Slide 1 text

Defocus Techniques for Camera Dynamic Range Expansion Matthew Trentacoste, Cheryl Lau, Mushfiqur Rouf, Rafal Mantiuk, Wolfgang Heidrich University of British Columbia

Slide 2

Slide 2 text

Defocus DR expansion • Sensors limited in dynamic range Can be expanded, but tradeoffs exist • Evaluate the opposite, reduce the dynamic range of the scene incident on the sensor by optical blurring, restore in software 5 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 =

Slide 3

Slide 3 text

Approach • Use 2 techniques to aid: coded aperture + deconvolution • Aperture filter to improve deconvolution quality PSF preserves more information [Rashkar 2006][Levin 2007][Veeraraghavan 2007] • Deconvolution to restore original image Recent advances using natural image statistics [Bando 2007][Levin 2007]

Slide 4

Slide 4 text

Physical setup • Rays from scene pass through aperture plane and focused onto sensor • Cone of rays from out-of-focus points intersects sensor, forming the shape of the aperture • A pattern in the aperture plane is projected onto the sensor for out-of-focus points

Slide 5

Slide 5 text

Coded Aperture • Originally from x-ray astronomy [Fenimore 1978][Gottesman 1989] • Structured arrays + decoding algorithm with resolution of pinhole, but better SNR • Employed in visible light photography [Rashkar 2006][Levin 2007][Veeraraghavan 2007] • Improve frequency properties of filter

Slide 6

Slide 6 text

Aperture filters • What makes a good filter? • Frequency response • Position and spacing of zero frequencies • Diffraction / transmission

Slide 7

Slide 7 text

Deconvolution • Restore image distorted by PSF [Wiener 1964][Richardson 1972][Lucy 1974] • Ill-posed, infinite solutions • No exact solution due to noise • Division in FFT, issues with small values in OTF of filter f = f0 ⊗ k + η

Slide 8

Slide 8 text

Deconvolution • Current state-of-the-art methods rely on natural image statistics • Real-world images share several properties: Heavy-tail distribution of gradients • Prior term in deconvolution algorithms [Bando 2007][Levin 2007] • Favors interpretations of the image with all the gradient intensity at a few pixels

Slide 9

Slide 9 text

Evaluation • Goal : determine whether any combo of filter / deconvolution yields meaningful reduction in DR with acceptable final image quality • Measure DR reduction both in terms of image local contrast and filter • Measure image quality as difference between deconvolved and original images

Slide 10

Slide 10 text

Source material Atrium Morning Atrium Night Figure 3.3: Sample images used in evaluation. Radius Atrium Morning Atrium Night min max reduction min max reduction Original 0.00 11.0 0.00 12.0 1 0.00 10.8 0.200 0.452 12.0 0.452 2 0.00 10.6 0.424 0.622 12.0 0.622 3 0.00 10.3 0.716 1.163 11.8 1.34 4 0.02 10.0 1.00 1.436 11.4 1.99 5 0.08 9.94 1.14 1.589 11.4 2.23 6 0.15 9.92 1.24 1.731 11.2 2.51 8 0.31 9.83 1.48 1.890 10.8 3.13 9 0.40 9.79 1.61 1.950 10.5 3.41 11 0.66 9.71 1.94 2.08 10.3 3.74 13 0.86 9.67 2.19 2.18 10.1 4.13 16 1.04 9.59 2.45 2.26 9.61 4.65 Figure 3.4: Amount of reduction in dynamic range as a function of radius of a standard aperture (disk) filter in pixels. All units are in terms of powers of two, referred to as exposure value (EV) stops. Atrium Morning Atrium Night

Slide 11

Slide 11 text

Source material Atrium Morning Atrium Night Figure 3.3: Sample images used in evaluation. Radius Atrium Morning Atrium Night min max reduction min max reduction Original 0.00 11.0 0.00 12.0 1 0.00 10.8 0.200 0.452 12.0 0.452 2 0.00 10.6 0.424 0.622 12.0 0.622 3 0.00 10.3 0.716 1.163 11.8 1.34 4 0.02 10.0 1.00 1.436 11.4 1.99 5 0.08 9.94 1.14 1.589 11.4 2.23 6 0.15 9.92 1.24 1.731 11.2 2.51 8 0.31 9.83 1.48 1.890 10.8 3.13 9 0.40 9.79 1.61 1.950 10.5 3.41 11 0.66 9.71 1.94 2.08 10.3 3.74 13 0.86 9.67 2.19 2.18 10.1 4.13 16 1.04 9.59 2.45 2.26 9.61 4.65 Figure 3.4: Amount of reduction in dynamic range as a function of radius of a standard aperture (disk) filter in pixels. All units are in terms of powers of two, referred to as exposure value (EV) stops. Atrium Morning Atrium Night 2.45 EV

Slide 12

Slide 12 text

Source material Atrium Morning Atrium Night Figure 3.3: Sample images used in evaluation. Radius Atrium Morning Atrium Night min max reduction min max reduction Original 0.00 11.0 0.00 12.0 1 0.00 10.8 0.200 0.452 12.0 0.452 2 0.00 10.6 0.424 0.622 12.0 0.622 3 0.00 10.3 0.716 1.163 11.8 1.34 4 0.02 10.0 1.00 1.436 11.4 1.99 5 0.08 9.94 1.14 1.589 11.4 2.23 6 0.15 9.92 1.24 1.731 11.2 2.51 8 0.31 9.83 1.48 1.890 10.8 3.13 9 0.40 9.79 1.61 1.950 10.5 3.41 11 0.66 9.71 1.94 2.08 10.3 3.74 13 0.86 9.67 2.19 2.18 10.1 4.13 16 1.04 9.59 2.45 2.26 9.61 4.65 Figure 3.4: Amount of reduction in dynamic range as a function of radius of a standard aperture (disk) filter in pixels. All units are in terms of powers of two, referred to as exposure value (EV) stops. Atrium Morning Atrium Night 2.45 EV 4.56 EV

Slide 13

Slide 13 text

Tests • Filters evaluated: • Normal aperture • Gaussian • Veeraraghavan • Levin • Zhou • Deconvolution evaluated: • Wiener filtering • Richardson-Lucy • Bando • Levin

Slide 14

Slide 14 text

Evaluation (cont) • Success criteria: • Reduction of at least 2 stops to justify the computational cost of deconv • Quality of at least PSNR 35

Slide 15

Slide 15 text

Images Weiner Richardson-Lucy Bando Levin filter=Zhou, noise = 0, radius = 1

Slide 16

Slide 16 text

Images Weiner Richardson-Lucy Bando Levin filter=Zhou, noise = 0, radius = 5

Slide 17

Slide 17 text

Images Weiner Richardson-Lucy Bando Levin filter=Zhou, noise = 0, radius = 16

Slide 18

Slide 18 text

Deconv: no noise 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 10 15 20 25 30 35 40 45 50 55 60 Dynamic range reduction (EV stops) PSNR (dB) Atrium Morning deconvolution Weiner Richardson−Lucy Bando Levin 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 10 15 20 25 30 35 40 45 50 55 60 Dynamic range reduction (EV stops) PSNR (dB) Atrium Night deconvolution Weiner Richardson−Lucy Bando Levin DR reduction DR reduction PSNR PSNR orning deconvolution Weiner Richardson−Lucy Bando Levin 25 30 35 40 45 50 55 60 PSNR (dB) Atrium Morning deconvolution Weiner Richardson−Lucy Bando Levin

Slide 19

Slide 19 text

Aperture: no noise 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 10 15 20 25 30 35 40 45 50 55 60 Dynamic range reduction (EV stops) PSNR (dB) Atrium Morning aperture filter Standard Aperture Gaussian Veeraraghavan Zhou Levin 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 10 15 20 25 30 35 40 45 50 55 60 Dynamic range reduction (EV stops) PSNR (dB) Atrium Night aperture filter Standard Aperture Gaussian Veeraraghavan Zhou Levin DR reduction DR reduction PSNR PSNR Morning aperture filter Standard Aperture Gaussian Veeraraghavan Zhou Levin 20 25 30 35 40 45 50 55 60 PSNR (dB) Atrium Morning aperture filter Standard Aperture Gaussian Veeraraghavan Zhou Levin

Slide 20

Slide 20 text

Deconv: noise 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 10 15 20 25 30 35 40 45 50 55 60 Dynamic range reduction (EV stops) PSNR (dB) Atrium Morning deconvolution Weiner Richardson−Lucy Bando Levin 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 10 15 20 25 30 35 40 45 50 55 60 Dynamic range reduction (EV stops) PSNR (dB) Atrium Night deconvolution Weiner Richardson−Lucy Bando Levin DR reduction DR reduction PSNR PSNR orning deconvolution Weiner Richardson−Lucy Bando Levin 25 30 35 40 45 50 55 60 PSNR (dB) Atrium Morning deconvolution Weiner Richardson−Lucy Bando Levin

Slide 21

Slide 21 text

Aperture: noise 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 10 15 20 25 30 35 40 45 50 55 60 Dynamic range reduction (EV stops) PSNR (dB) Atrium Morning aperture filter Standard Aperture Gaussian Veeraraghavan Zhou Levin 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 10 15 20 25 30 35 40 45 50 55 60 Dynamic range reduction (EV stops) PSNR (dB) Atrium Night aperture filter Standard Aperture Gaussian Veeraraghavan Zhou Levin DR reduction DR reduction PSNR PSNR Morning aperture filter Standard Aperture Gaussian Veeraraghavan Zhou Levin 20 25 30 35 40 45 50 55 60 PSNR (dB) Atrium Morning aperture filter Standard Aperture Gaussian Veeraraghavan Zhou Levin

Slide 22

Slide 22 text

Conclusions • Levin deconv the best, obtaining results with coded filters at very low noise levels • No combination of filter and deconvolution consistently produced acceptable results • Efficiency of the approach is scene dependent Most efficient for small, isolated bright regions