Slide 1

Slide 1 text

Anomalous surface plasmon dispersion in aluminum Eric Eliel Gert ‘t Hooft Philip Chimento >ĞŝĚĞŶhŶŝǀĞƌƐŝƚLJͻYƵĂŶƚƵŵKƉƟĐƐ @therealptomato { }

Slide 2

Slide 2 text

{ Surface plasmons }

Slide 3

Slide 3 text

Quick explanation of them Surface plasmons Using English literature

Slide 4

Slide 4 text

in English literature Image: public domain Surface plasmons Dr. Edwin Abbott Abbott, author of...

Slide 5

Slide 5 text

“Flatland”

Slide 6

Slide 6 text

“Flatland” A surface plasmon polariton is what a light wave would be in Flatland

Slide 7

Slide 7 text

“Flatland” A surface plasmon polariton is what a light wave would be in Flatland

Slide 8

Slide 8 text

Exist on the interface between a metal and a dielectric Surface plasmons

Slide 9

Slide 9 text

Can be excited using light, but not directly Surface plasmons

Slide 10

Slide 10 text

Can be excited using light, but not directly Surface plasmons

Slide 11

Slide 11 text

A surface plasmon on a metal-air interface has more momentum than a photon with the same energy in air Surface plasmons

Slide 12

Slide 12 text

A photon in a denser medium can match the momentum of a surface plasmon on a metal-air interface Surface plasmons

Slide 13

Slide 13 text

Attenuated total reflection — “Kretschmann configuration” ATR Coupling

Slide 14

Slide 14 text

Evanescent waves from the total internal reflection cross the metal and couple to plasmons on the other side ATR Coupling

Slide 15

Slide 15 text

{ That was easy }

Slide 16

Slide 16 text

It’s a question of “the least bad” Metals for plasmonics

Slide 17

Slide 17 text

Aluminum is one of the “least bad” Metals for plasmonics

Slide 18

Slide 18 text

Rakic et al., Appl. Opt. 37, p. 5271 (1998) Aluminum has an interband transition that absorbs at 800 nm Aluminum

Slide 19

Slide 19 text

E ective mode index of plasmons on an aluminum surface Aluminum plasmons īĞĐƟǀĞ^WŝŶĚĞdž

Slide 20

Slide 20 text

have a region of anomalous dispersion Aluminum plasmons īĞĐƟǀĞ^WŝŶĚĞdž Anomalous   dispersion

Slide 21

Slide 21 text

Experiment Exciting plasmons on aluminum by ATR coupling ϱŶŵ^ŝ 3 N 4   ƉƌŽƚĞĐƟŽŶůĂLJĞƌ ϳ͕ϵ͕ϭϮ͕ϭϯŶŵů <ϳŐůĂƐƐ

Slide 22

Slide 22 text

Measure reflection as a function of angle Experiment                                              ^ŽƵrĐe                                                                                                                                                                                                              DeteĐtŽr                    ɽ                                  ɽ

Slide 23

Slide 23 text

We measure hundreds of one-wavelength curves like these... Experiment

Slide 24

Slide 24 text

...to get a dispersion curve like this Experiment īĞĐƟǀĞ^WŝŶĚĞdž

Slide 25

Slide 25 text

The results were less than inspiring for a 9 nm layer Plasmon dispersion

Slide 26

Slide 26 text

For a 12 nm layer, the dispersion was anomalous but less than expected Plasmon dispersion īĞĐƟǀĞ^WŝŶĚĞdž

Slide 27

Slide 27 text

Novotny et al., J. Nanophotonics 5 (2011) Thin-layer aluminum doesn’t have the same optical properties as bulk aluminum What’s going on? ďƵůŬ

Slide 28

Slide 28 text

Thicker aluminum layer behaves more like bulk aluminum, but diminishes the ATR e ect How to fix it?

Slide 29

Slide 29 text

Thicker aluminum layer behaves more like bulk aluminum, but diminishes the ATR e ect How to fix it? The evanescent waves evanesce before they reach the top

Slide 30

Slide 30 text

You have to be crazy to do it, but: the Otto configuration How to fix it?

Slide 31

Slide 31 text

Crazy? Relative size of a dust particle, 20 µm Gap size, 1 µm

Slide 32

Slide 32 text

Luckily, that problem is solvable How to fix it? ŚŝŐŚͲŝŶĚĞdžĚŝĞůĞĐƚƌŝĐ ůŽǁͲŝŶĚĞdž ĚŝĞůĞĐƚƌŝĐ

Slide 33

Slide 33 text

{ Thanks } Fruitful discussions Michiel de Dood Wolfgang Lö er Kind assistance Daan Boltje Klara Uhlirova