Slide 9
Slide 9 text
.
. Generalized Method of Moments (GMM) Estimation
QPCCEsP
(Mt, N, q, pobs, x, y, η, w, (¯
α)):
minimize
θ ∈ Υ; mc; ξ; ω; z
1
2
ξ ′ZξWξZ ′
ξ
ξ + 1
2
ω ′ZωWωZ ′
ω
ω
subject to • for all t = 1, · · · , T, j = 1, · · · , J, and f = 1, · · · , F :
Mt
N
N
∑
i=1
πijt = qjt; pjt = pobs
jt
− mcjt
• for all t = 1, · · · , T; i = 1, · · · , N; and j = 1, · · · , J :
complementarity constraints in LCPNB
• 0 ≤ mcjt ≤ pobs
jt
• βik = ¯
βk + σβk ηik for k = 1, . . . , K,
• αi = exp(¯
α wi)
and • mcjt = y ′
jt
ϕ + ωjt.
Fixing an ¯
α, the estimation problem becomes locally solvable by
SNOPT. In validating the estimation model, we add
K
∑
k=1
[ (
¯
αk − ¯
αinc
k
)
2
+
(
¯
βk − ¯
βinc
k
)
2
+
(
σβk − σinc
βk
)
2
]
in the objective function to identify parameters that are closed to the
incumbent values ¯
αinc
k
, ¯
βinc
k
and σinc
βk
.
Yu-Ching Lee Pure Characteristics Model Estimation 9/ 10