Slide 11
Slide 11 text
.
.
Multiobjective
Optimization
. reduce
to single-
objective
.
.
a priori ar-
ticulation of
preference
.
.
weighted
sum
.
weighted
global
criterion
.
Chankong,
Haimes
83
.
Zeleny
82
.
Yu, Leit-
mann
74
.
lexico-
graphic
.
Osyczka
84
.
Waltz
67
.
weighted
min-max
.
Miettin-
en
99
.
exponen-tial
weighted
.
Athan,
Pa-
palam-
bros
96
.
weighted
product
.
Gerasimov,
Repko
78
.
Bridg-
man
22
.
goal pro-
gramming
.
Charnes
et al.
67/55
.
Ijiri 65
.
Charnes,
Cooper
61
.
bounded
objective
function
.
Hwang,
Md.
Masud
79
.
Haimes
et al. 71
.
physical pro-
gramming
.
Chen et
al. 00
.
Messac
96
.
a posteriori
articula-
tion of
preference
.
.
physical pro-
gramming
.
Messac,
Mattson
02
.
Martinez
et al. 01
.
NBI
.
Das 99
.
Das,
Dennis
98
.
NC
.
Messac
et al. 03
. no artic-
ulation of
preference
.
.
global
criterion
.
TOPSIS
.
Hwang
et al. 93
.
Yoon 80
.
object-
ive
sum
.
Chankong,
Haimes
83
.
Zeleny
82
. Yu, Leit-
mann
74
.
min-max
.
Li 92
.
Osyczka
78
.
Yu 73
.
Nash
arbitration
.
Straffin
93
.
Davis 83
.
object-
ive
product
.
Cheng,
Li 96
.
Rao
.
Rao 87
.
Rao and
Freiheit
91
.
multi-
objective
.
.
simulated
annealing
.
.
SMOSA
.
Suppap-
itnarm
et al 00
.
UMOSA
.
Ulunga
et al
98,99
.
PSA
.
Czyzak
et al
96-98
.
WMOSA
.
Susman
02-04
.
PDMOSA
.
Susman
03-05
.
particle
swarm
.
.
Aggrega-
tion
.
Parso-
poulos
et al
.
Baum-
gartner
et al
.
Lexico-
graphic
.
Hu and
Eberhart
.
Sub-
Popula-tion
.
Parso-
poulos
et al
.
Chow
and Tsui
.
Comb-ined
.
Mah-
fouf
et al.
.
Xiao-hua
et al.
.
Other
.
Li
.
Zhang
et al.
.
Pareto-
based
.
Moore
and
Chap-
man
.
Ray and
Liew
.
Field-
send and
Singh
.
...
.
evolution-
ary
algorithms
.
.
ranking
.
Gold-
berg
89
.
Fonseca,
Fleming
93
.
Srinivas,
Deb 95
.
Cheng,
Li 95
.
VEGA
.
Schaf-fer
85
.
Pareto-set
filter .
Cheng,
Li 97 .
tourna-ment
selection
.
Horn et
al. 94
.
niche
techniques
.
fitness
sharing
.
additional
techniques
.
eucli-
dean
distance
.
Osyc-
zka,
Kundu
96
.
weigh-
ted
sum
.
Ishi-
buchi,
Murata
96
.
zero-
one-
weigh-
ted
sum
.
Kurs-
awe
91
.
constr.
preemp.
goal
prog.
.
Gen,
Liu 95
.
Pareto
fitness
func.
.
Schau-
mann et
al. 98
.
• only one Pareto solution can be found in one run
• preference-based (specify preference for trade-off solution)
• not all can be found in non-convex MOOPS
• all algorithms require a prior knowledge (weights, ε, targets)
.
• multiple Pareto solutions can be found in one run
• a posteriori articulation of preference
• “easier”: diversity in decision and objective space (non-linear mapping)
9 / 37