Slide 1

Slide 1 text

The New Genomics [email protected] Dr. Matt Wood

Slide 2

Slide 2 text

Hello

Slide 3

Slide 3 text

Hello

Slide 4

Slide 4 text

Data

Slide 5

Slide 5 text

DNA

Slide 6

Slide 6 text

Chromosome 11 : ACTN3 : rs1815739

Slide 7

Slide 7 text

Chromosome X : rs6625163

Slide 8

Slide 8 text

Chromosome 19 : FUT2 : rs601338

Slide 9

Slide 9 text

+0.25 Chromosome 15 : rs2472297

Slide 10

Slide 10 text

Chromosome 2 : rs10427255

Slide 11

Slide 11 text

TYPE II Chromosome 10 : rs7903146

Slide 12

Slide 12 text

Chromosome 1 : rs4481887

Slide 13

Slide 13 text

I know this, because...

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

A T C G G T C C A G G

Slide 16

Slide 16 text

A T C G G T C C A G G A G C C A G G U C C Transcription

Slide 17

Slide 17 text

A T C G G T C C A G G A G C C A G G U C C Translation Ser Glu Val Transcription

Slide 18

Slide 18 text

No content

Slide 19

Slide 19 text

No content

Slide 20

Slide 20 text

Chromosome 11 : ACTN3 : rs1815739

Slide 21

Slide 21 text

Chromosome X : rs6625163

Slide 22

Slide 22 text

Chromosome 19 : FUT2 : rs601338

Slide 23

Slide 23 text

+0.25 Chromosome 15 : rs2472297

Slide 24

Slide 24 text

Chromosome 2 : rs10427255

Slide 25

Slide 25 text

TYPE II Chromosome 10 : rs7903146

Slide 26

Slide 26 text

Chromosome 1 : rs4481887

Slide 27

Slide 27 text

I know all that, because...

Slide 28

Slide 28 text

Human Genome Project

Slide 29

Slide 29 text

40 species ensembl.org

Slide 30

Slide 30 text

Compare species

Slide 31

Slide 31 text

Biological importance

Slide 32

Slide 32 text

Step change

Slide 33

Slide 33 text

Less time. Lower cost.

Slide 34

Slide 34 text

No content

Slide 35

Slide 35 text

No content

Slide 36

Slide 36 text

Compare individuals

Slide 37

Slide 37 text

No content

Slide 38

Slide 38 text

Data generation costs are falling (pretty much everywhere)

Slide 39

Slide 39 text

Sequencing challenge X

Slide 40

Slide 40 text

Amazona vittata

Slide 41

Slide 41 text

Analytics challenge

Slide 42

Slide 42 text

Lots of data, Lots of uses, Lots of users, Lots of locations

Slide 43

Slide 43 text

Cost

Slide 44

Slide 44 text

Analytics challenge X

Slide 45

Slide 45 text

Accessibility challenge

Slide 46

Slide 46 text

The New Genomics

Slide 47

Slide 47 text

Graceful. Beautiful.

Slide 48

Slide 48 text

Impossible to re-create

Slide 49

Slide 49 text

Snowflake Science

Slide 50

Slide 50 text

Reproducibility

Slide 51

Slide 51 text

Reproducibility scales science

Slide 52

Slide 52 text

Reproduce. Reuse. Remix.

Slide 53

Slide 53 text

Value++

Slide 54

Slide 54 text

No content

Slide 55

Slide 55 text

How do we get from here to there? 5PRINCIPLES REPRODUCIBILITY OF

Slide 56

Slide 56 text

1. Use the gravity of data 5 PRINCIPLES REPRODUCIBILITY OF

Slide 57

Slide 57 text

Increasingly large data collections

Slide 58

Slide 58 text

1000 Genomes Project: 200Tb

Slide 59

Slide 59 text

Challenging to obtain and manage

Slide 60

Slide 60 text

Expensive to experiment

Slide 61

Slide 61 text

Large barrier to reproducibility

Slide 62

Slide 62 text

Data size will increase

Slide 63

Slide 63 text

Data integration will increase

Slide 64

Slide 64 text

Move data to the users

Slide 65

Slide 65 text

Move data to the users X

Slide 66

Slide 66 text

Move tools to the data

Slide 67

Slide 67 text

Place data where it can consumed by tools

Slide 68

Slide 68 text

Place tools where they can access data

Slide 69

Slide 69 text

No content

Slide 70

Slide 70 text

No content

Slide 71

Slide 71 text

No content

Slide 72

Slide 72 text

Canonical source

Slide 73

Slide 73 text

No content

Slide 74

Slide 74 text

More data, more users, more uses, more locations

Slide 75

Slide 75 text

Cost and complexity

Slide 76

Slide 76 text

Cost and complexity kill reproducibility

Slide 77

Slide 77 text

Utility computing

Slide 78

Slide 78 text

Availability

Slide 79

Slide 79 text

Intel Xeon E5 NVIDIA Tesla GPUs

Slide 80

Slide 80 text

90 - 120k IOPS on SSDs

Slide 81

Slide 81 text

Pay-as-you-go

Slide 82

Slide 82 text

100% Reserved capacity

Slide 83

Slide 83 text

100% Reserved capacity On-demand

Slide 84

Slide 84 text

100% Reserved capacity On-demand

Slide 85

Slide 85 text

Spot instances

Slide 86

Slide 86 text

Name-your-price

Slide 87

Slide 87 text

No content

Slide 88

Slide 88 text

2. Ease of use is a pre-requisite 5 PRINCIPLES REPRODUCIBILITY OF

Slide 89

Slide 89 text

http://headrush.typepad.com/creating_passionate_users/2005/10/getting_users_p.html

Slide 90

Slide 90 text

Help overcome the suck threshold

Slide 91

Slide 91 text

Easy to embrace and extend

Slide 92

Slide 92 text

Choose the right abstraction for the user

Slide 93

Slide 93 text

$ ec2-run-instances

Slide 94

Slide 94 text

$ starcluster start

Slide 95

Slide 95 text

No content

Slide 96

Slide 96 text

No content

Slide 97

Slide 97 text

Package and automate

Slide 98

Slide 98 text

Package and automate Amazon machine images, VM import

Slide 99

Slide 99 text

Package and automate Amazon machine images, VM import Deployment scripts, CloudFormation, Chef, Puppet

Slide 100

Slide 100 text

Expert-as-a-service

Slide 101

Slide 101 text

No content

Slide 102

Slide 102 text

No content

Slide 103

Slide 103 text

1000 Genomes Cloud BioLinux

Slide 104

Slide 104 text

No content

Slide 105

Slide 105 text

Your HiSeq data Illumina BaseSpace

Slide 106

Slide 106 text

DNA and RNA sequences Genomespace, Broad Institute at MIT

Slide 107

Slide 107 text

Data as a programmable resource

Slide 108

Slide 108 text

3. Reuse is as important as reproduction 5 PRINCIPLES REPRODUCIBILITY OF

Slide 109

Slide 109 text

Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics

Slide 110

Slide 110 text

Seven Deadly sins of Bioinformatics: http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics

Slide 111

Slide 111 text

Infonauts are hackers

Slide 112

Slide 112 text

They have their own way of working

Slide 113

Slide 113 text

The ‘Big Red Button’

Slide 114

Slide 114 text

Fire and forget reproduction is a good first step, but limits longer term value.

Slide 115

Slide 115 text

Monolithic, one-stop-shop

Slide 116

Slide 116 text

Work well for intended purpose

Slide 117

Slide 117 text

Challenging to install, dependency heavy

Slide 118

Slide 118 text

Inflexible

Slide 119

Slide 119 text

Embrace infonauts as hackers

Slide 120

Slide 120 text

Small things. Loosely coupled.

Slide 121

Slide 121 text

Easier to reuse

Slide 122

Slide 122 text

Easier to integrate

Slide 123

Slide 123 text

Scale out

Slide 124

Slide 124 text

Cancer drug discovery: 50,000 cores < $1000 an hour Schrödinger and CycleServer

Slide 125

Slide 125 text

4. Build for collaboration 5 PRINCIPLES REPRODUCIBILITY OF

Slide 126

Slide 126 text

Workflows are memes

Slide 127

Slide 127 text

Reproduction is just the first step

Slide 128

Slide 128 text

Bill of materials: code, data, configuration, infrastructure

Slide 129

Slide 129 text

Full definition for reproduction

Slide 130

Slide 130 text

Utility computing provides a playground for data science

Slide 131

Slide 131 text

Code + AMI + custom datasets + public datasets + databases + compute + result data

Slide 132

Slide 132 text

Code + AMI + custom datasets + public datasets + databases + compute + result data

Slide 133

Slide 133 text

Code + AMI + custom datasets + public datasets + databases + compute + result data

Slide 134

Slide 134 text

Code + AMI + custom datasets + public datasets + databases + compute + result data

Slide 135

Slide 135 text

Package, automate, contribute.

Slide 136

Slide 136 text

Utility platform provides scale for production runs

Slide 137

Slide 137 text

5. Provenance is a first class object 5 PRINCIPLES REPRODUCIBILITY OF

Slide 138

Slide 138 text

Versioning becomes really important

Slide 139

Slide 139 text

Especially in an active community

Slide 140

Slide 140 text

Doubly so with loosely coupled tools

Slide 141

Slide 141 text

Provenance metadata is a first class entity

Slide 142

Slide 142 text

Distributed provenance

Slide 143

Slide 143 text

5PRINCIPLES REPRODUCIBILITY OF

Slide 144

Slide 144 text

Remove constraints 5PRINCIPLES REPRODUCIBILITY OF

Slide 145

Slide 145 text

Accelerate science 5PRINCIPLES REPRODUCIBILITY OF

Slide 146

Slide 146 text

Chromosome 11 : ACTN3 : rs1815739

Slide 147

Slide 147 text

Chromosome X : rs6625163

Slide 148

Slide 148 text

Chromosome 19 : FUT2 : rs601338

Slide 149

Slide 149 text

+0.25 Chromosome 15 : rs2472297

Slide 150

Slide 150 text

Chromosome 2 : rs10427255

Slide 151

Slide 151 text

TYPE II Chromosome 10 : rs7903146

Slide 152

Slide 152 text

Chromosome 1 : rs4481887

Slide 153

Slide 153 text

Thank you aws.amazon.com @mza [email protected]