Slide 1

Slide 1 text

An Introduction to Functional and Reactive Programming Dan Lew

Slide 2

Slide 2 text

No content

Slide 3

Slide 3 text

Functional Reactive Programming

Slide 4

Slide 4 text

Reactive Programming

Slide 5

Slide 5 text

No content

Slide 6

Slide 6 text

Proactive Passive

Slide 7

Slide 7 text

public class Switch {
 LightBulb lightBulb;
 
 void onFlip(boolean enabled) {
 lightBulb.power(enabled);
 }
 }

Slide 8

Slide 8 text

Observable Reactive

Slide 9

Slide 9 text

public static LightBulb create(Switch theSwitch) {
 LightBulb lightBulb = new LightBulb();
 theSwitch.addOnFlipListener(enabled -> lightBulb.power(enabled));
 return lightBulb;
 }

Slide 10

Slide 10 text

No content

Slide 11

Slide 11 text

Proactive Reactive Who controls LightBulb? Others via power() LightBulb itself Who determines what Switch controls? Switch itself Others via listener Is LightBulb synchronous? Synchronous Asynchronous

Slide 12

Slide 12 text

Modularity • Proactive: Modules control each other • Reactive: Modules control themselves

Slide 13

Slide 13 text

No content

Slide 14

Slide 14 text

No content

Slide 15

Slide 15 text

Why does my db control my UI?

Slide 16

Slide 16 text

No content

Slide 17

Slide 17 text

public class Switch {
 interface OnFlipListener {
 void onFlip(boolean enabled);
 } void addOnFlipListener(OnFlipListener onFlipListener) {
 // ...etc...
 }
 } • Every listener unique • Code cannot be generalized / built-upon • Every listener requires direct access to Switch • Listenable not something that can be passed around

Slide 18

Slide 18 text

public class Switch {
 ??? flips() {
 // etc...
 }
 }

Slide 19

Slide 19 text

Function Returns… One Many Sync Async

Slide 20

Slide 20 text

Function Returns… One Many Sync T Async

Slide 21

Slide 21 text

Function Returns… One Many Sync T Iterable Async

Slide 22

Slide 22 text

Function Returns… One Many Sync T Iterable Async Future

Slide 23

Slide 23 text

Function Returns… One Many Sync T Iterable Async Future Observable

Slide 24

Slide 24 text

public class Switch {
 Observable flips() {
 // etc...
 }
 } // Creating the LightBulb… public static LightBulb create(Observable switchObs) {
 LightBulb lightBulb = new LightBulb();
 switchObs.subscribe(enabled -> lightBulb.power(enabled));
 return lightBulb;
 }

Slide 25

Slide 25 text

public class Switch {
 Observable flips() {
 // etc...
 }
 } // Creating the LightBulb… public static LightBulb create(Observable observable) {
 LightBulb lightBulb = new LightBulb();
 switchObs.subscribe(enabled -> lightBulb.power(enabled));
 return lightBulb;
 }

Slide 26

Slide 26 text

public class Switch {
 Observable flips() {
 // etc...
 }
 } // Creating the LightBulb… public static LightBulb create(Observable observable) {
 LightBulb lightBulb = new LightBulb();
 observable.subscribe(enabled -> lightBulb.power(enabled));
 return lightBulb;
 }

Slide 27

Slide 27 text

public class Switch {
 Observable flips() {
 // etc...
 }
 } // Creating the LightBulb… public static LightBulb create(Observable observable) {
 LightBulb lightBulb = new LightBulb();
 observable.subscribe(enabled -> lightBulb.power(enabled));
 return lightBulb;
 }

Slide 28

Slide 28 text

public class Switch {
 Observable flips() {
 // etc...
 }
 } // Creating the LightBulb… public static LightBulb create(Observable observable) {
 LightBulb lightBulb = new LightBulb();
 observable.subscribe(enabled -> lightBulb.power(enabled));
 return lightBulb;
 }

Slide 29

Slide 29 text

Observable • Collection over time • …can have endings… • …Or errors

Slide 30

Slide 30 text

Functional Programming

Slide 31

Slide 31 text

PURE

Slide 32

Slide 32 text

int two = add(1, 1); public static int add(int a, int b) {
 System.out.println("You're an idiot for using this function!");
 System.exit(1010101);
 return a + b;
 }

Slide 33

Slide 33 text

int two = add(1, 1); public static int add(int a, int b) {
 System.out.println("You're an idiot for using this function!");
 System.exit(1010101);
 return a + b;
 }

Slide 34

Slide 34 text

int two = add(1, 1); public static int add(int a, int b) {
 System.out.println("You're an idiot for using this function!");
 System.exit(1010101);
 return a + b;
 }

Slide 35

Slide 35 text

int two = add(1, 1); public static int add(int a, int b) {
 System.out.println("You're an idiot for using this function!");
 System.exit(1010101);
 return a + b;
 }

Slide 36

Slide 36 text

int two = add(1, 1); public static int add(int a, int b) {
 System.out.println("You're an idiot for using this function!");
 System.exit(1010101);
 return a + b;
 } Side effects SUCK

Slide 37

Slide 37 text

List numbers = new ArrayList<>(Arrays.asList(1, 2, 3));
 boolean sumEqualsProduct = sum(numbers) == product(numbers); public static int sum(List numbers) {
 int total = 0;
 Iterator it = numbers.iterator();
 while(it.hasNext()) {
 total += it.next();
 it.remove();
 }
 return total;
 }

Slide 38

Slide 38 text

List numbers = new ArrayList<>(Arrays.asList(1, 2, 3));
 boolean sumEqualsProduct = sum(numbers) == product(numbers); public static int sum(List numbers) {
 int total = 0;
 Iterator it = numbers.iterator();
 while(it.hasNext()) {
 total += it.next();
 it.remove();
 }
 return total;
 }

Slide 39

Slide 39 text

List numbers = new ArrayList<>(Arrays.asList(1, 2, 3));
 boolean sumEqualsProduct = sum(numbers) == product(numbers); public static int sum(List numbers) {
 int total = 0;
 Iterator it = numbers.iterator();
 while(it.hasNext()) {
 total += it.next();
 it.remove();
 }
 return total;
 } Side effects SUCK

Slide 40

Slide 40 text

Side Effects • No input List reticulateSplines() • No output void consume(Food food) • Output cannot be derived from input List getResults(int limit) • Modifies parameters void getHitRect(Rect outRect)

Slide 41

Slide 41 text

Functional Programming • Pure functions • Immutable data • Higher-order functions

Slide 42

Slide 42 text

public static List doubleValues(List input) {
 List output = new ArrayList<>();
 for (Integer value : input) {
 output.add(value * 2);
 }
 return output;
 } Inflexible!

Slide 43

Slide 43 text

public interface Function {
 Integer apply(Integer int);
 }
 
 public static List map(List input, Function fun) {
 List output = new ArrayList<>();
 for (Integer value : input) {
 output.add(fun.apply(value));
 }
 return output;
 }

Slide 44

Slide 44 text

public interface Function {
 Integer apply(Integer int);
 }
 
 public static List map(List input, Function fun) {
 List output = new ArrayList<>();
 for (Integer value : input) {
 output.add(fun.apply(value));
 }
 return output;
 }

Slide 45

Slide 45 text

public interface Function {
 Integer apply(Integer int);
 }
 
 public static List map(List input, Function fun) {
 List output = new ArrayList<>();
 for (Integer value : input) {
 output.add(fun.apply(value));
 }
 return output;
 }

Slide 46

Slide 46 text

List numbers = Arrays.asList(1, 2, 3);
 List doubled = map(numbers, i -> i * 2);

Slide 47

Slide 47 text

public interface Function {
 R apply(T t);
 }
 
 public static List map(List input, Function fun) {
 List output = new ArrayList<>();
 for (T value : input) {
 output.add(fun.apply(value));
 }
 return output;
 }

Slide 48

Slide 48 text

List numbers = Arrays.asList(1, 2, 3);
 List doubled = map(numbers, i -> i * 2); List words = Arrays.asList("one", "two", "three");
 List lengths = map(words, s -> s.length());

Slide 49

Slide 49 text

List words = Arrays.asList("one", "two", "three");
 List lengths = map(words, s -> s.length());

Slide 50

Slide 50 text

Back to reactive land…

Slide 51

Slide 51 text

public class Switch {
 enum State {
 ON,
 OFF
 }
 
 Observable flips() {
 // etc...
 }
 } // Creating the LightBulb… public static LightBulb create(Observable switchObs) {
 LightBulb lightBulb = new LightBulb();
 switchObs.subscribe(enabled -> lightBulb.power(enabled));
 return lightBulb;
 }

Slide 52

Slide 52 text

public class Switch {
 enum State {
 ON,
 OFF
 }
 
 Observable flips() {
 // etc...
 }
 } // Creating the LightBulb… public static LightBulb create(Observable switchObs) {
 LightBulb lightBulb = new LightBulb();
 switchObs.subscribe(enabled -> lightBulb.power(enabled));
 return lightBulb;
 }

Slide 53

Slide 53 text

public class Switch {
 enum State {
 ON,
 OFF
 }
 
 Observable flips() {
 // etc...
 }
 } // Creating the LightBulb… public static LightBulb create(Observable observable) {
 LightBulb lightBulb = new LightBulb();
 observable.subscribe(enabled -> lightBulb.power(enabled));
 return lightBulb;
 }

Slide 54

Slide 54 text

No content

Slide 55

Slide 55 text


 Switch theSwitch = new Switch(); Observable stateObservable = theSwitch.flips(); 
 Observable booleanObservable = stateObservable
 .map(state -> state == State.ON); 
 LightBulb.create(booleanObservable);

Slide 56

Slide 56 text


 Switch theSwitch = new Switch(); 
 Observable stateObservable = theSwitch.flips(); 
 Observable booleanObservable = stateObservable
 .map(state -> state == State.ON); 
 LightBulb.create(booleanObservable);

Slide 57

Slide 57 text


 Switch theSwitch = new Switch(); 
 Observable stateObservable = theSwitch.flips(); 
 Observable booleanObservable = stateObservable
 .map(state -> state == State.ON); 
 LightBulb.create(booleanObservable);

Slide 58

Slide 58 text


 Switch theSwitch = new Switch(); 
 Observable stateObservable = theSwitch.flips(); 
 Observable booleanObservable = stateObservable
 .map(state -> state == State.ON); 
 LightBulb.create(booleanObservable);

Slide 59

Slide 59 text


 Switch theSwitch = new Switch(); 
 Observable stateObservable = theSwitch.flips(); 
 Observable booleanObservable = stateObservable
 .map(state -> state == State.ON); 
 LightBulb.create(booleanObservable);

Slide 60

Slide 60 text

No content

Slide 61

Slide 61 text

teams boards

Slide 62

Slide 62 text

teams boards combineLatest

Slide 63

Slide 63 text

• create • defer • from • interval • just • range • repeat • timer • buffer • map • flatMap • switchMap • groupBy • scan • reduce • window • debounce • distinct • elementAt • filter • first • last • ignoreElements • sample • skip • skipLast • skipWhile • take • takeList • takeUntil • combineLatest • zip • merge • concat • amb • startWith • do • observeOn • subscribeOn • delay • publish • throttle • timestamp • retry

Slide 64

Slide 64 text

Functional Reactive Programming • Reactive streams • Functional operators

Slide 65

Slide 65 text

But why? • Reactive streams • Modularity • Inherently asynchronous • Functional operators • Control flow of streams • Reproduce common logic

Slide 66

Slide 66 text

Resources • RxJava introduction: http://blog.danlew.net/2014/09/15/grokking- rxjava-part-1/ • Stream explanation: https://cycle.js.org/streams.html • Reactive duality: https://goo.gl/F2OyVp • Learn you a Haskell: learnyouahaskell.com

Slide 67

Slide 67 text

Thanks! • @danlew42 • danlew.net